The Bootstrap

作者: Joel L. Horowitz

DOI: 10.1016/S1573-4412(01)05005-X

关键词:

摘要: … The bootstrap estimator of G n (τ, F 0 ) is G n τ F n = P n ∗ n 1 / 2 X ∗ − X ≤ τ , where P* n is the probability distribution induced by the bootstrap sampling process. G n (τ, F n ) satisfies …

参考文章(135)
G. E. P. Box, D. R. Cox, An Analysis of Transformations Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 26, pp. 211- 243 ,(1964) , 10.1111/J.2517-6161.1964.TB00553.X
Peter Hall, Bingyi Jing, On Sample Reuse Methods for Dependent Data Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 58, pp. 727- 737 ,(1996) , 10.1111/J.2517-6161.1996.TB02111.X
H. L. Le Roy, L. Lecam, J. Neyman, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV Revue de l'Institut International de Statistique / Review of the International Statistical Institute. ,vol. 37, pp. 230- ,(1969) , 10.2307/1402306
Rudolf Beran, Gilles R. Ducharme, Asymptotic Theory for Bootstrap Methods in Statistics ,(1991)
H.D. Vinod, 23 Bootstrap methods: Applications in econometrics Handbook of Statistics. ,vol. 11, pp. 629- 661 ,(1993) , 10.1016/S0169-7161(05)80058-6
Andrew Chesher, The information matrix test Economics Letters. ,vol. 13, pp. 45- 48 ,(1983) , 10.1016/0165-1765(83)90009-5
Peter Hall, Heavy traffic approximations for busy period in an M/G/∞ queue Stochastic Processes and their Applications. ,vol. 19, pp. 259- 269 ,(1985) , 10.1016/0304-4149(85)90028-6
Friedrich Götze, Hans R Künsch, Second-order correctness of the blockwise bootstrap for stationary observations Annals of Statistics. ,vol. 24, pp. 1914- 1933 ,(1996) , 10.1214/AOS/1069362303