On the convergence of the modified elastic-viscous-plastic method for solving the sea ice momentum equation

作者: Madlen Kimmritz , Sergey Danilov , Martin Losch

DOI: 10.1016/J.JCP.2015.04.051

关键词:

摘要: Most dynamic sea ice models for climate type simulations are based on the viscous-plastic (VP) rheology. The resulting stiff system of partial differential equations velocity is either solved implicitly at great computational cost, or explicitly with added pseudo-elasticity (elastic-viscous-plastic, EVP). A recent modification EVP approach seeks to improve convergence method by re-interpreting it as a pseudotime VP solver. question this modified revisited here and shown that reached provided stability requirements satisfied number iterations sufficiently high. Only in limit, solvers converge same solution. Related questions impact mesh resolution incomplete also addressed.

参考文章(15)
E. C. Hunke, J. K. Dukowicz, An Elastic–Viscous–Plastic Model for Sea Ice Dynamics Journal of Physical Oceanography. ,vol. 27, pp. 1849- 1867 ,(1997) , 10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2
Jean-François Lemieux, Bruno Tremblay, Numerical convergence of viscous‐plastic sea ice models Journal of Geophysical Research. ,vol. 114, ,(2009) , 10.1029/2008JC005017
Sylvain Bouillon, Thierry Fichefet, Vincent Legat, Gurvan Madec, The elastic–viscous–plastic method revisited Ocean Modelling. ,vol. 71, pp. 2- 12 ,(2013) , 10.1016/J.OCEMOD.2013.05.013
Elizabeth C. Hunke, Viscous–Plastic Sea Ice Dynamics with the EVP Model: Linearization Issues Journal of Computational Physics. ,vol. 170, pp. 18- 38 ,(2001) , 10.1006/JCPH.2001.6710
Martin Losch, Dimitris Menemenlis, Jean-Michel Campin, Patick Heimbach, Chris Hill, On the formulation of sea-ice models. Part 1: Effects of different solver implementations and parameterizations Ocean Modelling. ,vol. 33, pp. 129- 144 ,(2010) , 10.1016/J.OCEMOD.2009.12.008
Rainald Löhner, Ken Morgan, Jaime Peraire, Mehdi Vahdati, Finite Element Flux-Corrected Transport (FEM-FCT) for the Euler and Navier-Stokes equations International Journal for Numerical Methods in Fluids. ,vol. 7, pp. 1093- 1109 ,(1987) , 10.1002/FLD.1650071007
Ralph Timmermann, Sergey Danilov, Jens Schröter, Carmen Böning, Dmitry Sidorenko, Katja Rollenhagen, Ocean circulation and sea ice distribution in a finite element global sea ice–ocean model Ocean Modelling. ,vol. 27, pp. 114- 129 ,(2009) , 10.1016/J.OCEMOD.2008.10.009
Jinlun Zhang, W. D. Hibler, On an efficient numerical method for modeling sea ice dynamics Journal of Geophysical Research: Oceans. ,vol. 102, pp. 8691- 8702 ,(1997) , 10.1029/96JC03744
Q. Wang, S. Danilov, D. Sidorenko, R. Timmermann, C. Wekerle, X. Wang, T. Jung, J. Schröter, The Finite Element Sea Ice-Ocean Model (FESOM) v.1.4: formulation of an ocean general circulation model Geoscientific Model Development. ,vol. 7, pp. 663- 693 ,(2014) , 10.5194/GMD-7-663-2014