Schubert polynomials and quiver formulas

作者: Alexander Yong , Harry Tamvakis , Andrew Kresch , Anders S. Buch

DOI: 10.1215/S0012-7094-04-12214-6

关键词:

摘要: Fulton's universal Schubert polynomials [F3] represent degeneracy loci for morphisms of vector bundles with rank conditions coming from a permutation. The quiver formula of Buch and Fulton [BF] expresses these as an integer linear combination products Schur determinants. We present positive, nonrecursive combinatorial the coefficients. Our result is applied to obtain new expansions for the Lascoux Schutzenberger [LS1] and explicit Giambelli formulas in the classical quantum cohomology ring any partial flag variety.

参考文章(18)
Sara C. Billey, William Jockusch, Richard P. Stanley, Some Combinatorial Properties of Schubert Polynomials Journal of Algebraic Combinatorics. ,vol. 2, pp. 345- 374 ,(1993) , 10.1023/A:1022419800503
William Fulton, Flags, Schubert polynomials, degeneracy loci, and determinantal formulas Duke Mathematical Journal. ,vol. 65, pp. 381- 420 ,(1992) , 10.1215/S0012-7094-92-06516-1
Frank Sottile, Nantel Bergeron, Schubert polynomials, the Bruhat order, and the geometry of flag manifolds Duke Mathematical Journal. ,vol. 95, pp. 373- 423 ,(1998) , 10.1215/S0012-7094-98-09511-4
Ian Grant Macdonald, Notes on Schubert polynomials LACIM, Université du Québec à Montréal. ,(1991)
Sergey Fomin, Sergei Gelfand, Alexander Postnikov, Quantum Schubert polynomials Journal of the American Mathematical Society. ,vol. 10, pp. 565- 596 ,(1997) , 10.1090/S0894-0347-97-00237-3
Ionu? Ciocan-Fontanine, On quantum cohomology rings of partial flag varieties Duke Mathematical Journal. ,vol. 98, pp. 485- 524 ,(1999) , 10.1215/S0012-7094-99-09815-0
Sergey Fomin, Curtis Greene, Noncommutative Schur functions and their applications Discrete Mathematics. ,vol. 306, pp. 1080- 1096 ,(2006) , 10.1016/J.DISC.2006.03.028
William Fulton, Universal Schubert polynomials Duke Mathematical Journal. ,vol. 96, pp. 575- 594 ,(1999) , 10.1215/S0012-7094-99-09618-7
Richard P. Stanley, On the Number of Reduced Decompositions of Elements of Coxeter Groups European Journal of Combinatorics. ,vol. 5, pp. 359- 372 ,(1984) , 10.1016/S0195-6698(84)80039-6
A. N. Kirillov, Cauchy Identities for Universal Schubert Polynomials Journal of Mathematical Sciences. ,vol. 121, pp. 2360- 2370 ,(2004) , 10.1023/B:JOTH.0000024617.88286.F2