Improved Bounds for Online Preemptive Matching

作者: Oren Weimann , Leah Epstein , Danny Segev , Asaf Levin

DOI: 10.4230/LIPICS.STACS.2013.389

关键词:

摘要: When designing a preemptive online algorithm for the maximum matching problem, we wish to maintain valid M while edges of underlying graph are presented one after other. with an edge e, should decide whether augment by adding e (in which case may be removed later on) or keep in its current form without is lost good). The objective eventually hold weight. The main contribution this paper establish new lower and upper bounds on competitive ratio achievable algorithms: - We provide bound 1 + ln 2 \approx 1.693 any randomized cardinality thus improving currently best known / (e-1) 1.581 due Karp, Vazirani, Vazirani [STOC'90]. - devise that achieves expected 5.356 weight matching. This finding demonstrates power randomization context, showing how beat tight 3 2\sqrt{2} 5.828 deterministic algorithms, obtained combining McGregor [APPROX'05] recent Varadaraja [ICALP'11].

参考文章(23)
Andrew Chi-Chih Yao, Probabilistic Computations: Toward a Unified Measure of Complexity (Extended Abstract) foundations of computer science. pp. 222- 227 ,(1977)
Mariano Zelke, Weighted Matching in the Semi-Streaming Model Algorithmica. ,vol. 62, pp. 1- 20 ,(2012) , 10.1007/S00453-010-9438-5
Andrew McGregor, Finding Graph Matchings in Data Streams Lecture Notes in Computer Science. pp. 170- 181 ,(2005) , 10.1007/11538462_15
Nikhil Bansal, Niv Buchbinder, Anupam Gupta, Joseph Naor, An O(log2 k)-Competitive Algorithm for Metric Bipartite Matching Algorithms – ESA 2007. pp. 522- 533 ,(2007) , 10.1007/978-3-540-75520-3_47
Kook Jin Ahn, Sudipto Guha, Linear programming in the semi-streaming model with application to the maximum matching problem Information & Computation. ,vol. 222, pp. 59- 79 ,(2013) , 10.1016/J.IC.2012.10.006
B. Kalyanasundaram, K. Pruhs, Online weighted matching Journal of Algorithms. ,vol. 14, pp. 478- 488 ,(1993) , 10.1006/JAGM.1993.1026
Magnús M. Halldórsson, Guy Kortsarz, Hadas Shachnai, Sum Coloring Interval and k-Claw Free Graphs with Application to Scheduling Dependent Jobs Algorithmica. ,vol. 37, pp. 187- 209 ,(2003) , 10.1007/S00453-003-1031-8
Nikhil Bansal, Niv Buchbinder, Anupam Gupta, Joseph Naor, A randomized O ( log^2 k )-competitive algorithm for metric bipartite matching Algorithmica. ,vol. 68, pp. 390- 403 ,(2014) , 10.1007/S00453-012-9676-9
Allan Borodin, Ran El-Yaniv, On randomization in on-line computation Information & Computation. ,vol. 150, pp. 244- 267 ,(1999) , 10.1006/INCO.1998.2775
Jacob Jan Paulus, Deshi Ye, Guochuan Zhang, Optimal online-list batch scheduling Information Processing Letters. ,vol. 109, pp. 1125- 1128 ,(2009) , 10.1016/J.IPL.2009.07.006