Path-Integral Calculation of the Mean Number of Overcrossings in an Entangled Polymer Network

作者: Gustavo A. Arteca

DOI: 10.1021/CI980144L

关键词:

摘要: A quantitative characterization of entanglements between polymer chains is essential for understanding the behavior solutions. When dealing with unknotted open chains, that must rely on geometrical (rather than topological) measures entanglement complexity. In this work, we deal a simple shape descriptor:  mean overcrossing number set curves. This descriptor provides physically intuitive self-entanglements in chain or network. Many analytical properties are still not well understood. part, due to use numerical algorithms its computation. Path-integral formalisms offer an improvement over situation, by providing expressions descriptors or, at least, more efficient their evaluation. discuss approach represent numbers path integrals. The formalism general ...

参考文章(47)
R C King, A H A Al-Qubanchi, The Weyl groups and weight multiplicities of the exceptional Lie groups Journal of Physics A. ,vol. 14, pp. 51- 75 ,(1981) , 10.1088/0305-4470/14/1/007
JÜRGEN ALDINGER, ISAAC KLAPPER, MICHAEL TABOR, FORMULAE FOR THE CALCULATION AND ESTIMATION OF WRITHE Journal of Knot Theory and Its Ramifications. ,vol. 04, pp. 343- 372 ,(1995) , 10.1142/S021821659500017X
Y. Diao, C. Ernst, E. J. Janse van Rensburg, In Search of a Good Polygonal Knot Energy Journal of Knot Theory and Its Ramifications. ,vol. 06, pp. 633- 657 ,(1997) , 10.1142/S0218216597000352
J. Käs, H. Strey, J.X. Tang, D. Finger, R. Ezzell, E. Sackmann, P.A. Janmey, F-actin, a model polymer for semiflexible chains in dilute, semidilute, and liquid crystalline solutions Biophysical Journal. ,vol. 70, pp. 609- 625 ,(1996) , 10.1016/S0006-3495(96)79630-3
Marc L. Mansfield, Knots in Hamilton Cycles Macromolecules. ,vol. 27, pp. 5924- 5926 ,(1994) , 10.1021/MA00098A057
S F Edwards, Statistical mechanics with topological constraints: I Proceedings of the Physical Society. ,vol. 91, pp. 513- 519 ,(1967) , 10.1088/0370-1328/91/3/301
Steve Bryson, Michael H. Freedman, Zheng-Xu He, Zhenghan Wang, Möbius invariance of knot energy Bulletin of the American Mathematical Society. ,vol. 28, pp. 99- 103 ,(1993) , 10.1090/S0273-0979-1993-00348-3
Y. Diao, C. Ernst, E. J. Janse van Rensburg, Knot Energies by Ropes Journal of Knot Theory and Its Ramifications. ,vol. 06, pp. 799- 807 ,(1997) , 10.1142/S0218216597000431
Arkady L Kholodenko, Dale P Rolfsen, KNOT COMPLEXITY AND RELATED OBSERVABLES FROM PATH INTEGRALS FOR SEMIFLEXIBLE POLYMERS Journal of Physics A. ,vol. 29, pp. 5677- 5691 ,(1996) , 10.1088/0305-4470/29/17/038
J. David Moroz, Randall D. Kamien, SELF-AVOIDING WALKS WITH WRITHE Nuclear Physics. ,vol. 506, pp. 695- 710 ,(1997) , 10.1016/S0550-3213(97)00601-9