Personalized symptoms forecasting for pollen-induced allergic rhinitis sufferers

作者: D. Voukantsis , U. Berger , F. Tzima , K. Karatzas , S. Jaeger

DOI: 10.1007/S00484-014-0905-6

关键词:

摘要: Hay fever is a pollen-induced allergic reaction that strongly affects the overall quality of life many individuals. The disorder may vary in severity and symptoms depending on patient-specific factors such as genetic disposition, individual threshold pollen concentration levels, medication, former immunotherapy, others. Thus, information services improve hay sufferers must address needs each separately. In this paper, we demonstrate development offer personalized forecasts. backbone these consists data reported by users Personal Fever Diary system levels (European Aeroallergen Network) several sampling sites. Data were analyzed using computational intelligence methods, resulting highly customizable forecasting models warnings to Patient system. performance for pilot area (Vienna Lower Austria) reached correlation coefficient r = 0.71 ± 0.17 (average standard deviation) sample 219 with major contribution Pollen an 0.66 0.18 second 393 users, minor These findings provide example combining from different sources advanced engineering order develop innovative e-health capacity more direct rhinitis sufferers.

参考文章(33)
A. Karppinen, J. Kukkonen, T. Elolähde, M. Konttinen, T. Koskentalo, A modelling system for predicting urban air pollution:: comparison of model predictions with the data of an urban measurement network in Helsinki Atmospheric Environment. ,vol. 34, pp. 3735- 3743 ,(2000) , 10.1016/S1352-2310(00)00073-X
Oliver Brandt, Uwe E. Berger, Kostas Karatzas, Torsten Zuberbier, Karl-Christian Bergmann, Das elektronische Pollentagebuch Allergo journal. ,vol. 22, pp. 112- 117 ,(2013) , 10.1007/S15007-013-0064-9
Kostas D. Karatzas, Marina Riga, Matt Smith, Presentation and Dissemination of Pollen Information Springer, Dordrecht. pp. 217- 247 ,(2013) , 10.1007/978-94-007-4881-1_7
Karl-Christian Bergmann, Mikhail Sofiev, Allergenic pollen : a review of the production, release, distribution and health impacts Springer.. ,(2013)
MMTE Huynen, B Menne, H Behrendt, R Bertollini, S Bonini, R Brandao, C Brown-Fahrländer, B Clot, C d'Ambrosio, P De Nuntiis, KL Ebi, J Emberlin, E Erdei Orbanne, C Galán, S Jäger, S Kovats, P Mandrioli, P Martens, A Menzel, B Nyenzi, A Rantio-Lehtimäki, J Ring, O Rybnicek, C Traidl-Hoffmann, AJH van Vliet, T Voigt, S Weiland, M Wickman, None, Phenology and human health: allergic disorders Health and global environmental change. ,(2003)
Mark A. Hall, Ian H. Witten, Eibe Frank, Data Mining: Practical Machine Learning Tools and Techniques ,(1999)
Letty A. de Weger, Thijs Beerthuizen, Pieter S. Hiemstra, Jacob K. Sont, Development and validation of a 5-day-ahead hay fever forecast for patients with grass-pollen-induced allergic rhinitis International Journal of Biometeorology. ,vol. 58, pp. 1047- 1055 ,(2013) , 10.1007/S00484-013-0692-5
U. Berger, K. Karatzas, S. Jaeger, D. Voukantsis, M. Sofiev, O. Brandt, T. Zuberbier, K. C. Bergmann, Personalized pollen-related symptom-forecast information services for allergic rhinitis patients in Europe. Allergy. ,vol. 68, pp. 963- 965 ,(2013) , 10.1111/ALL.12181
Dimitris Voukantsis, Harri Niska, Kostas Karatzas, Marina Riga, Athanasios Damialis, Despoina Vokou, Forecasting daily pollen concentrations using data-driven modeling methods in Thessaloniki, Greece Atmospheric Environment. ,vol. 44, pp. 5101- 5111 ,(2010) , 10.1016/J.ATMOSENV.2010.09.006