An Additive Functional Equation in Orthogonality Spaces

作者: Choonkil Park , Themistocles M. Rassias

DOI: 10.1007/978-3-642-28821-0_14

关键词:

摘要: By applying the fixed point method as well direct method, we provide a proof of Hyers-Ulam stability linear mappings, isometric mappings and 2-isometric in Banach modules over unital C ∗-algebra non-Archimedean associated with an orthogonally additive functional equation. Moreover, prove homomorphisms ∗-algebras

参考文章(69)
Carlos Benítez Rodríguez, Javier Alonso Romero, Orthogonality in normed linear spaces: a survey. Part I: Main propierties Extracta Mathematicae. ,vol. 3, pp. 1- 16 ,(1988)
Carlos Benítez Rodríguez, Javier Alonso Romero, Orthogonality in normed linear spaces: A survey. Part II: Relations between main orthogonalities. Extracta Mathematicae. ,vol. 4, pp. 121- 131 ,(1989)
Margherita Fochi, Functional equations on A-orthogonal vectors Aequationes Mathematicae. ,vol. 38, pp. 28- 40 ,(1989) , 10.1007/BF01839491
Yumei Ma, THE ALEKSANDROV PROBLEM FOR UNIT DISTANCE PRESERVING MAPPING Acta Mathematica Scientia. ,vol. 20, pp. 359- 364 ,(2000) , 10.1016/S0252-9602(17)30642-2
Themistocles M. Rassias, Functional Equations and Inequalities Springer Netherlands. ,(2000) , 10.1007/978-94-011-4341-7
Themistocles M Rassias, Themistocles M Rassias, None, Functional equations, inequalities and applications Kluwer Academic Publishers. ,(2003) , 10.1007/978-94-017-0225-6
Soon-Mo Jung, Themistocles M.Rassias, ON DISTANCE-PRESERVING MAPPINGS Journal of The Korean Mathematical Society. ,vol. 41, pp. 667- 680 ,(2004) , 10.4134/JKMS.2004.41.4.667
Tae Soo Kim, Soon Mo Jung, A fixed point approach to the stability of the cubic functional equation Boletin De La Sociedad Matematica Mexicana. ,vol. 12, pp. 51- 57 ,(2006)
Donald H. Hyers, George Isac, Themistocles M. Rassias, Stability of functional equations in several variables ,(1998)