Bayesian Gaussian Process Models: PAC-Bayesian Generalisation Error Bounds and Sparse Approximations

作者: Matthias Seeger

DOI:

关键词:

摘要: … prove distribution-free upper bounds for Bayesian-type classification rules, and we apply this technique to nonparametric Bayesian Gaussian process classification methods. The main …

参考文章(158)
D. J. C. Mackay, Introduction to Gaussian processes NATO advanced study institute on generalization in neural networks and machine learning. pp. 133- 165 ,(1998)
Manfred K. Warmuth, Nick Littlestone, Relating Data Compression and Learnability ,(2003)
Tom Minka, Rosalind W. Picard, Learning How to Learn is Learning With Point Sets ,(2017)
Michel Ledoux, Michel Talagrand, Probability in Banach spaces ,(1991)
Lehel Csató, Gaussian processes:iterative sparse approximations Aston University. ,(2002)
Tommi S. Jaakkola, Michael I. Jordan, Variational methods for inference and estimation in graphical models Massachusetts Institute of Technology. ,(1997)