Simulations of modular multipliers on FPGA

作者: Yinan Kong , Braden Phillips

DOI:

关键词:

摘要: A diverse variety of algorithms and architectures for modular multiplication have been published. They were recently classified into four classes, i.e. Sum Residues, Classical, Barrett Montgomery. This paper provides timing area results FPGA implementations a survey the different wordlengths.

参考文章(19)
P. A. Findlay, B. A. Johnson, Modular exponentiation using recursive sums of residues international cryptology conference. pp. 371- 386 ,(1989) , 10.1007/0-387-34805-0_35
Ernest F. Brickell, A Fast Modular Multiplication Algorithm with Application to Two Key Cryptography international cryptology conference. pp. 51- 60 ,(1983) , 10.1007/978-1-4757-0602-4_5
Colin D. Walter, Montgomery's Multiplication Technique: How to Make It Smaller and Faster cryptographic hardware and embedded systems. pp. 80- 93 ,(1999) , 10.1007/3-540-48059-5_9
Colin D. Walter, Faster Modular Multiplication by Operand Scaling international cryptology conference. pp. 313- 323 ,(1991) , 10.1007/3-540-46766-1_26
Shin-ichi Kawamura, Kyoko Hirano, A fast modular arithmetic algorithm using a residue table theory and application of cryptographic techniques. pp. 245- 250 ,(1988) , 10.1007/3-540-45961-8_21
Chien-Yuan Chen, Chin-Chen Chang, None, A fast modular multiplication algorithm for calculating the product AB modulo N Information Processing Letters. ,vol. 72, pp. 77- 81 ,(1999) , 10.1016/S0020-0190(99)00137-4
C.D. Walter, Still faster modular multiplication Electronics Letters. ,vol. 31, pp. 263- 264 ,(1995) , 10.1049/EL:19950217
R. L. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and public-key cryptosystems Communications of the ACM. ,vol. 26, pp. 96- 99 ,(1983) , 10.1145/357980.358017
Peter L. Montgomery, Modular multiplication without trial division Mathematics of Computation. ,vol. 44, pp. 519- 521 ,(1985) , 10.1090/S0025-5718-1985-0777282-X