Statistical theory of brownian motion in a moving fluid in the presence of a temperature gradient

作者: D.N. Zubarev , A.G. Bashkirov

DOI: 10.1016/0031-8914(68)90087-6

关键词:

摘要: Abstract The theory of Brownian motion in an inhomogeneous fluid is discussed within the framework method one authors (DNZ) for construction distribution function a nonequilibrium system. Fokker-Planck equation derived where temperature gradient left hand part considered as “external force”. An extra term right with kinetic coefficient η reflects additional dissipation effect ∼∇T. transport particles diffusion D = kT ζ and thermodiffusion coefficients T n B kT( 1 + ) also obtained, isthe friction nB number density particles.

参考文章(6)
John G. Kirkwood, The Statistical Mechanical Theory of Transport Processes I. General Theory The Journal of Chemical Physics. ,vol. 14, pp. 180- 201 ,(1946) , 10.1063/1.1724117
Richard J. Bearman, Statistical Mechanical Theory of the Thermal Conductivity of Binary Liquid Solutions The Journal of Chemical Physics. ,vol. 29, pp. 1278- 1286 ,(1958) , 10.1063/1.1744710
Naokata Takeyama, Viscous Forces and Brownian Motion Journal of the Physical Society of Japan. ,vol. 16, pp. 1030- 1031 ,(1961) , 10.1143/JPSJ.16.1030
Richard J. Bearman, John G. Kirkwood, Statistical Mechanics of Transport Processes. XI. Equations of Transport in Multicomponent Systems The Journal of Chemical Physics. ,vol. 28, pp. 136- 145 ,(1958) , 10.1063/1.1744056
James A. McLennan, The Formal Statistical Theory of Transport Processes Advances in Chemical Physics. pp. 261- 317 ,(2007) , 10.1002/9780470143513.CH6