Efficient, specific, developmentally appropriate cre-mediated recombination in anterior pituitary gonadotropes and thyrotropes

作者: María Inés Pérez-Millán , Michael G. Zeidler , Thomas L. Saunders , Sally A. Camper , Shannon W. Davis

DOI: 10.1002/DVG.22425

关键词:

摘要: Summary Tissue-specific expression of cre recombinase is a well-established genetic tool to analyze gene function, and it limited only by the efficiency specificity available mouse strains. Here, we report generation transgenic line containing cassette with codon usage optimized for mammalian cells (iCre) under control glycoprotein hormone α-subunit (αGSU) regulatory sequences in bacterial artificial chromosome genomic clone. Initial analysis this line, Tg(αGSU-iCre), reporter strains reveals onset activity differentiating developing anterior pituitary gland at embryonic day 12.5, pattern characteristic endogenous αGSU. In adult mice, αGSU-iCre was active lobe that produce αGSU (gonadotropes thyrotropes) high penetrance. Little or no observed other tissues, including skeletal cardiac muscle, brain, kidney, lungs, testis, ovary, liver. This suitable efficient, specific, developmentally regulated deletion floxed alleles gonadotropes thyrotropes. genesis 51:785–792. © 2013 Wiley Periodicals, Inc.

参考文章(26)
Philippe Soriano, Generalized lacZ expression with the ROSA26 Cre reporter strain Nature Genetics. ,vol. 21, pp. 70- 71 ,(1999) , 10.1038/5007
E. Seuntjens, A. Hauspie, H. Vankelecom, C. Denef, Ontogeny of Plurihormonal Cells in the Anterior Pituitary of the Mouse, as Studied by Means of Hormone mRNA Detection in Single Cells Journal of Neuroendocrinology. ,vol. 14, pp. 611- 619 ,(2002) , 10.1046/J.1365-2826.2002.00808.X
Margaret L. Van Keuren, Galina B. Gavrilina, Wanda E. Filipiak, Michael G. Zeidler, Thomas L. Saunders, Generating transgenic mice from bacterial artificial chromosomes: transgenesis efficiency, integration and expression outcomes. Transgenic Research. ,vol. 18, pp. 769- 785 ,(2009) , 10.1007/S11248-009-9271-2
L. Budry, C. Lafont, T. El Yandouzi, N. Chauvet, G. Conejero, J. Drouin, P. Mollard, Related pituitary cell lineages develop into interdigitated 3D cell networks Proceedings of the National Academy of Sciences of the United States of America. ,vol. 108, pp. 12515- 12520 ,(2011) , 10.1073/PNAS.1105929108
EC Lee, D Yu, J Martinez de Velasco, L Tessarollo, DA Swing, NG Court, DL, Jenkins, NA and Copeland, A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics. ,vol. 73, pp. 56- 65 ,(2001) , 10.1006/GENO.2000.6451
B. P. Zambrowicz, A. Imamoto, S. Fiering, L. A. Herzenberg, W. G. Kerr, P. Soriano, Disruption of overlapping transcripts in the ROSA βgeo 26 gene trap strain leads to widespread expression of β-galactosidase in mouse embryos and hematopoietic cells Proceedings of the National Academy of Sciences of the United States of America. ,vol. 94, pp. 3789- 3794 ,(1997) , 10.1073/PNAS.94.8.3789
H L Burrows, T S Birkmeier, A F Seasholtz, S A Camper, Targeted ablation of cells in the pituitary primordia of transgenic mice. Molecular Endocrinology. ,vol. 10, pp. 1467- 1477 ,(1996) , 10.1210/MEND.10.11.8923471
Gwen V. Childs, Multipotential pituitary cells that contain adrenocorticotropin (ACTH) and other pituitary hormones. Trends in Endocrinology and Metabolism. ,vol. 2, pp. 112- 117 ,(1991) , 10.1016/S1043-2760(05)80007-4
Shannon W. Davis, Amanda H. Mortensen, Sally A. Camper, Birthdating studies reshape models for pituitary gland cell specification. Developmental Biology. ,vol. 352, pp. 215- 227 ,(2011) , 10.1016/J.YDBIO.2011.01.010