Generating cuts in integer programming with families of special ordered sets

作者: J.M. Wilson

DOI: 10.1016/0377-2217(90)90302-R

关键词:

摘要: Abstract This paper describes families of cuts which can be added to integer programming formulations incorporating special ordered sets. Ways in the used are discussed and some computational experience is presented.

参考文章(7)
R. G. Jeroslow, J. K. Lowe, Experimental Results on the New Techniques for Integer Programming Formulations Journal of the Operational Research Society. ,vol. 36, pp. 393- 403 ,(1985) , 10.1057/JORS.1985.67
R. D. Snyder, Linear Programming with Special Ordered Sets Journal of the Operational Research Society. ,vol. 35, pp. 69- 74 ,(1984) , 10.1057/JORS.1984.8
Tony J. Van Roy, Laurence A. Wolsey, Solving Mixed Integer Programming Problems Using Automatic Reformulation Operations Research. ,vol. 35, pp. 45- 57 ,(1987) , 10.1287/OPRE.35.1.45
L. F. Escudero, S3 sets. An extension of the Beale-Tomlin special ordered sets Mathematical Programming. ,vol. 42, pp. 113- 123 ,(1988) , 10.1007/BF01589396
Wilhelm Hummeltenberg, Implementations of special ordered sets in MP software European Journal of Operational Research. ,vol. 17, pp. 1- 15 ,(1984) , 10.1016/0377-2217(84)90002-X
Ellis L. Johnson, Michael M. Kostreva, Uwe H. Suhl, Solving 0-1 Integer Programming Problems Arising from Large Scale Planning Models Operations Research. ,vol. 33, pp. 803- 819 ,(1985) , 10.1287/OPRE.33.4.803
Harlan Crowder, Ellis L. Johnson, Manfred Padberg, Solving Large-Scale Zero-One Linear Programming Problems Operations Research. ,vol. 31, pp. 803- 834 ,(1983) , 10.1287/OPRE.31.5.803