GOAT: Genetic Output Analysis Tool: An open source GWAS and genomic region visualization tool

作者: Beatriz S. Kanzki , Victor Dupuy , Cedric Urvoy , Fodil Belghait , Alain April

DOI: 10.1145/2896338.2897729

关键词:

摘要: Genome wide association studies (GWAS) are a widely used approach in genetic research to identify genes or variants involved human diseases. Each GWAS examines millions of unique single nucleotide polymorphisms (SNPs) for their phenotypic traits and In the context identifying complex associations large patient cohorts, this type study involves vast amount clinical data. order analyze these datasets efficiently we have developed Genetic Output Analysis Tool (GOAT) improve visualization annotation GOAT offers interactive search capabilities results via specific queries significant between multiple SNPs phenotypes. was designed be scalable operate on top "Big Data" technologies. The software interface researchers new tools help It is programmed python can connected directly any database using an Apache server. This paper outlines some GOAT's leading features characteristics compares them existing open source such as Locus Zoom Integrative Genomics Viewer (IGV). We also present future development plans provide with improved performance, ability mine data most interesting relevant information from

参考文章(22)
Eric Londin, Priyanka Yadav, Saul Surrey, Larry J. Kricka, Paolo Fortina, Use of Linkage Analysis, Genome-Wide Association Studies, and Next-Generation Sequencing in the Identification of Disease-Causing Mutations Methods of Molecular Biology. ,vol. 1015, pp. 127- 146 ,(2013) , 10.1007/978-1-62703-435-7_8
Ehud Grossman, Franz H. Messerli, Hypertension and diabetes. Advances in Cardiology. ,vol. 45, pp. 82- 106 ,(2008) , 10.1159/000115189
David Lipman, Johanna McEntyre, PubMed: bridging the information gap Canadian Medical Association Journal. ,vol. 164, pp. 1317- 1319 ,(2001)
Luke Barnard, Matej Mertik, Usability of Visualization Libraries for Web Browsers for Use in Scientific Analysis International Journal of Computer Applications. ,vol. 121, pp. 1- 5 ,(2015) , 10.5120/21501-4225
Michael Rebhan, Vered Chalifa-Caspi, Jaime Prilusky, Doron Lancet, GeneCards: integrating information about genes, proteins and diseases Trends in Genetics. ,vol. 13, pp. 163- 163 ,(1997) , 10.1016/S0168-9525(97)01103-7
Robert Sladek, Ghislain Rocheleau, Johan Rung, Christian Dina, Lishuang Shen, David Serre, Philippe Boutin, Daniel Vincent, Alexandre Belisle, Samy Hadjadj, Beverley Balkau, Barbara Heude, Guillaume Charpentier, Thomas J. Hudson, Alexandre Montpetit, Alexey V. Pshezhetsky, Marc Prentki, Barry I. Posner, David J. Balding, David Meyre, Constantin Polychronakos, Philippe Froguel, A genome-wide association study identifies novel risk loci for type 2 diabetes Nature. ,vol. 445, pp. 881- 885 ,(2007) , 10.1038/NATURE05616
David L Wheeler, Deanna M Church, Ron Edgar, Scott Federhen, Wolfgang Helmberg, Thomas L Madden, Joan U Pontius, Gregory D Schuler, Lynn M Schriml, Edwin Sequeira, Tugba O Suzek, Tatiana A Tatusova, Lukas Wagner, None, Database resources of the National Center for Biotechnology Information: update Nucleic Acids Research. ,vol. 32, pp. 35D- 40 ,(2004) , 10.1093/NAR/GKH073
Nilesh Jain, None, REVIEW OF DIFFERENT RESPONSIVE CSS FRONT-END FRAMEWORKS Journal of Global Research in Computer Sciences. ,vol. 5, pp. 5- 10 ,(2014)
H. Thorvaldsdottir, J. T. Robinson, J. P. Mesirov, Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration Briefings in Bioinformatics. ,vol. 14, pp. 178- 192 ,(2013) , 10.1093/BIB/BBS017