Implementation of Artificial Intelligence Based Ensemble Models for Gully Erosion Susceptibility Assessment

作者: Indrajit Chowdhuri , Subodh Chandra Pal , Alireza Arabameri , Asish Saha , Rabin Chakrabortty

DOI: 10.3390/RS12213620

关键词:

摘要:

参考文章(97)
Ayoub Kavousi, Behrooz Vahidi, Reza Salehi, Mohammad Kazem Bakhshizadeh, Naeem Farokhnia, S. Hamid Fathi, Application of the Bee Algorithm for Selective Harmonic Elimination Strategy in Multilevel Inverters IEEE Transactions on Power Electronics. ,vol. 27, pp. 1689- 1696 ,(2012) , 10.1109/TPEL.2011.2166124
D. Ravì, M. Bober, G.M. Farinella, M. Guarnera, S. Battiato, Semantic segmentation of images exploiting DCT based features and random forest Pattern Recognition. ,vol. 52, pp. 260- 273 ,(2016) , 10.1016/J.PATCOG.2015.10.021
J. Richard Landis, Gary G. Koch, The measurement of observer agreement for categorical data Biometrics. ,vol. 33, pp. 159- 174 ,(1977) , 10.2307/2529310
Yanli Wu, Wenping Li, Qiqing Wang, Qiangqiang Liu, Dongdong Yang, Maolin Xing, Yabing Pei, Shishun Yan, Landslide susceptibility assessment using frequency ratio, statistical index and certainty factor models for the Gangu County, China Arabian Journal of Geosciences. ,vol. 9, pp. 1- 16 ,(2016) , 10.1007/S12517-015-2112-0
Rodney A. Sparapani, Brent R. Logan, Robert E. McCulloch, Purushottam W. Laud, Nonparametric survival analysis using Bayesian Additive Regression Trees (BART). Statistics in Medicine. ,vol. 35, pp. 2741- 2753 ,(2016) , 10.1002/SIM.6893
Mariana Belgiu, Lucian Drăguţ, Random forest in remote sensing: A review of applications and future directions Isprs Journal of Photogrammetry and Remote Sensing. ,vol. 114, pp. 24- 31 ,(2016) , 10.1016/J.ISPRSJPRS.2016.01.011
Pravat Kumar Shit, Arup Sankar Nandi, Gouri Sankar Bhunia, Soil erosion risk mapping using RUSLE model on jhargram sub-division at West Bengal in India Modeling Earth Systems and Environment. ,vol. 1, pp. 28- ,(2015) , 10.1007/S40808-015-0032-3
Seyed Amir Naghibi, Hamid Reza Pourghasemi, Barnali Dixon, GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran Environmental Monitoring and Assessment. ,vol. 188, pp. 44- 44 ,(2016) , 10.1007/S10661-015-5049-6