On an identity by Chaundy and Bullard. I

作者: Tom H. Koornwinder , Michael J. Schlosser

DOI: 10.1016/S0019-3577(08)80002-X

关键词:

摘要: An identity by Chaundy and Bullard writes 1/(1 - x)n (n = l, 2,...) as a sum of two truncated binomial series. This was rediscovered many times. Notably, special case I. Daubechies, while she setting up the theory wavelets compact support. We discuss or survey different proofs identity, also its relationship with Gaus hypergeometric consider extension to complex values parameters which occur summation bounds. The paper concludes discussion multivariable analogue first given Damjanovic, Klamkin Ruehr. give Lauricella functions corresponding PDEs. ends new proof splitting Dirichlet's beta integral.

参考文章(16)
T. W. Chaundy, J. E. Bullard, John Smith's Problem The Mathematical Gazette. ,vol. 44, pp. 253- ,(1960) , 10.2307/3614890
J. J. Duistermaat, J. P. van Braam Houckgeest, J. A. C. Kolk, Multidimensional Real Analysis II: Integration ,(2004)
Lucy Joan Slater, Werner C. Rheinboldt, Generalized hypergeometric functions ,(1966)
Bateman Manuscript, Arthur Erdélyi, Harry Bateman, Higher Transcendental Functions ,(1981)
Edward Charles Titchmarsh, The theory of functions ,(1932)
A. J. Bosch, F. W. Steutel, An Identity (M. S. Klamkin and O. G. Ruehr) SIAM Review. ,vol. 28, pp. 243- 244 ,(1986) , 10.1137/1028065
O. Herrmann, On the approximation problem in nonrecursive digital filter design IEEE Transactions on Circuit Theory. ,vol. 18, pp. 411- 413 ,(1971) , 10.1109/TCT.1971.1083275
Markus Müller, Dierk Schleicher, Fractional sums and Euler-like identities The Ramanujan Journal. ,vol. 21, pp. 123- 143 ,(2010) , 10.1007/S11139-009-9214-9
Ingrid Daubechies, Ten Lectures on Wavelets ,(1992)
Rameshwar D. Gupta, Donald St. P. Richards, The history of the Dirichlet and Liouville distributions International Statistical Review. ,vol. 69, pp. 433- 446 ,(2001) , 10.1111/J.1751-5823.2001.TB00468.X