Optimization of variable blank holder force trajectory by sequential approximate optimization with RBF network

作者: Satoshi Kitayama , Kenta Kita , Koetsu Yamazaki

DOI: 10.1007/S00170-011-3755-Y

关键词:

摘要: Sequential approximate optimization (SAO) is an attractive approach for design optimization. In this paper, the radial basis function (RBF) network employed SAO. First, we examine width of Gaussian kernel, which affects response surface. By examining simple estimate proposed by Nakayama, four sufficient conditions are introduced. Then, a new in kernel proposed. Second, sampling strategy with RBF also order to find sparse region, density developed. The and examined through benchmark problems. Finally, SAO applied optimal variable blank holder force (VBHF) trajectory square cup deep drawing. objective taken as minimization deviation whole thickness. constraints quantitatively defined forming limit diagram no wrinkling tearing can be observed. variables force. particular, risk both handled separately. Numerical simulation carried out VBHF It clear from numerical that

参考文章(52)
Hongbing Fang, Mark F Horstemeyer, None, Global response approximation with radial basis functions Engineering Optimization. ,vol. 38, pp. 407- 424 ,(2006) , 10.1080/03052150500422294
Anoop A. Mullur, Achille Messac, Extended Radial Basis Functions: More Flexible and Effective Metamodeling AIAA Journal. ,vol. 43, pp. 1306- 1315 ,(2005) , 10.2514/1.11292
Hirotaka Nakayama, Masao Arakawa, Rie Sasaki, Simulation-Based Optimization Using Computational Intelligence Optimization and Engineering. ,vol. 3, pp. 201- 214 ,(2002) , 10.1023/A:1020971504868
T. Jansson, L. Nilsson, Minimizing the risk of failure in a sheet metal forming process Structural and Multidisciplinary Optimization. ,vol. 31, pp. 320- 332 ,(2006) , 10.1007/S00158-005-0604-3
Donald R. Jones, Matthias Schonlau, William J. Welch, Efficient Global Optimization of Expensive Black-Box Functions Journal of Global Optimization. ,vol. 13, pp. 455- 492 ,(1998) , 10.1023/A:1008306431147
D. E. Hardt, R. C. Fenn, Real-Time Control of Sheet Stability During Forming Journal of Engineering for Industry. ,vol. 115, pp. 299- 308 ,(1993) , 10.1115/1.2901664
T. Jansson, A. Andersson, L. Nilsson, Optimization of Draw-In for an Automotive Sheet Metal Part An evaluation using surrogate models and response surfaces Journal of Materials Processing Technology. ,vol. 159, pp. 426- 434 ,(2005) , 10.1016/J.JMATPROTEC.2004.06.011
H. Naceur, S. Ben-Elechi, J.L. Batoz, C. Knopf-Lenoir, Response surface methodology for the rapid design of aluminum sheet metal forming parameters Materials & Design. ,vol. 29, pp. 781- 790 ,(2008) , 10.1016/J.MATDES.2007.01.018
W. R. Wang, G. L. Chen, Z. Q. Lin, S. H. Li, Determination of optimal blank holder force trajectories for segmented binders of step rectangle box using PID closed-loop FEM simulation The International Journal of Advanced Manufacturing Technology. ,vol. 32, pp. 1074- 1082 ,(2007) , 10.1007/S00170-006-0440-7
G. Gary Wang, Adaptive Response Surface Method Using Inherited Latin Hypercube Design Points Journal of Mechanical Design. ,vol. 125, pp. 210- 220 ,(2003) , 10.1115/1.1561044