Complexity, Fractal Dimensions and Topological Entropy in Dynamical Systems

作者: Valentin Affraimovich , Lev Glebsky

DOI: 10.1007/1-4020-2947-0_3

关键词:

摘要: Instability of orbits in dynamical systems is the reason for their complex behavior. Main characteristics this complexity are e-complexity, topological entropy and fractal dimension. In two lectures we give a short introduction to ideas, results machinery part modern nonlinear dynamics

参考文章(42)
John W. Milnor, On the Entropy Geometry of Cellular Automata. Complex Systems. ,vol. 2, ,(1988)
Measures of Complexity Measures of Complexity. ,vol. 314, ,(1988) , 10.1007/3-540-50316-1
Sze-Bi Hsu, Valentin Afraimovich, Lectures on Chaotic Dynamical Systems ,(2002)
Nicolas Bourbaki, Elements of Mathematics Springer Berlin Heidelberg. ,(2004) , 10.1007/978-3-642-59312-3
Valentin Afraimovich, POINCAR E RECURRENCES OF COUPLED SUBSYSTEMS IN SYNCHRONIZED REGIMES Taiwanese Journal of Mathematics. ,vol. 3, pp. 139- 161 ,(1999) , 10.11650/TJM.3.1999.1315
B. Saussol, S. Troubetzkoy, S. Vaienti, Recurrence, Dimensions, and Lyapunov Exponents Journal of Statistical Physics. ,vol. 106, pp. 623- 634 ,(2002) , 10.1023/A:1013710422755
Floris Takens, Detecting strange attractors in turbulence Lecture Notes in Mathematics. ,vol. 898, pp. 366- 381 ,(1981) , 10.1007/BFB0091924