Parallelization of the Euler Equations on Unstructured Grids

作者: Christopher Bruner , Robert Walters , Christopher Bruner , Robert Walters

DOI: 10.2514/6.1997-1894

关键词:

摘要: D.... Diagonal block in the matrix problem Several different time-integration algorithms for g Euler implicit time integration equations are investigated on two distributede... Specific internal energy memory parallel computers using an explicit messageo stagnation passing paradigm: these classic Explicit, f... Flux vector four-stage Jameson-style Runge-Kutta, Block Jacobi, -f««m --•••• -Numerical flux Gauss-Seidel, and Symmetric /,/~.... ........ Upwind vectors Gauss-Seidel. A finite-volume formulation is used //> Fraction of that parallelizable spatial discretization physical domain. Both h0.. ....Specific enthalpy twoand three-dimensional test cases evaluated L Lower-triangular inner against five reference solutions to demonstrate accuracy arising fundamental sequential algorithms. Speedup l Inner iteration number; stage number efficiency issues pertaining various time-integraJameson-style Runge-Kutta tion addressed each computer system. ,„„ „„„ inegraion „ , . ., t • V>i i LHS,RHS...... Left-hand side, right-hand side Of considered, ° solicit! on. Gauss-Seidel has overall best performance. It also m _____ Number stages Rungedemonstrated as sole Kutta means evaluating performance algorithm often # compute nodes a given leads erroneous conclusions; clock needed run; quantity associated with cell's solve much better indicator immediate neighbor general method extending one-dih Unit normal face mensional limiter formulations unstructured case p Thermodynamic pressure briefly discussed applied Van Albada's Q.. ....Conservative variable vector, well Roe's Superbee limiter. Solutions conver0 = I o \ gence histories two-dimensional supersonic ramp ^ ' "^ limiters presented along &• & "••-States left 8 sides computations Earth Jesperson respectively Venkatakrishnan — Albada per esiua vec or rf..r., .Position centroid wrtacell formance similar s. J XT S..... Surface domain integration; area Nomenclature A, A' .........Flux jacobian matrices at > SGS B Baseline tB Mawxed convergence baseline c heat constant fo Measured Anodes -c u * to/. .User-specified tolerance cv......... ......... volume r *[ =-: ———— TT ,, This paper declared work U. S. Government, v __ Upper-triangular not subject copyright protection United integ^ation «.... ..Generic scalar Aerospace Engineer, Advanced Aerodynamics .-, f .. T^ >. j ^0-Mr.r.A 11^/00 r>u 1101 Cartesian components ot velocity Branch, Code 432100A, M/S 3, Bldg. 2187. Senior y Flow Member AIAA. Coefficient fPresident. 1872 Pratt Drive, Suite 1275. Associate 6 Fellow l/(m+l-l)

参考文章(65)
Alex Pothen, Horst D. Simon, Kang-Pu Liou, Partitioning sparse matrices with eigenvectors of graphs SIAM Journal on Matrix Analysis and Applications. ,vol. 11, pp. 430- 452 ,(1990) , 10.1137/0611030
G. D. van Albada, B. van Leer, W. W. Roberts, A comparative study of computational methods in cosmic gas dynamics Astronomy and Astrophysics. ,vol. 108, pp. 76- 84 ,(1982) , 10.1007/978-3-642-60543-7_6
V. Venkatakrishnan, Horst D. Simon, Timothy J. Barth, A MIMD Implementation of a Parallel Euler Solver for Unstructured Grids siam conference on parallel processing for scientific computing. ,vol. 6, pp. 117- 137 ,(1991) , 10.1007/BF00129774
I.S. Duff, A survey of sparse matrix research Proceedings of the IEEE. ,vol. 65, pp. 500- 535 ,(1977) , 10.1109/PROC.1977.10514
Youcef Saad, Martin H. Schultz, GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems SIAM Journal on Scientific and Statistical Computing. ,vol. 7, pp. 856- 869 ,(1986) , 10.1137/0907058
Gene M. Amdahl, Validity of the single processor approach to achieving large scale computing capabilities Proceedings of the April 18-20, 1967, spring joint computer conference on - AFIPS '67 (Spring). pp. 483- 485 ,(1967) , 10.1145/1465482.1465560
Rainald Löhner, Paresh Parikh, Generation of three-dimensional unstructured grids by the advancing-front method International Journal for Numerical Methods in Fluids. ,vol. 8, pp. 1135- 1149 ,(1988) , 10.1002/FLD.1650081003
Bram van Leer, Flux-vector splitting for the Euler equations Numerical Methods in Fluid Dynamics. ,vol. 170, pp. 80- 89 ,(1997) , 10.1007/978-3-642-60543-7_5
Stephen T. Barnard, Alex Pothen, Horst Simon, A spectral algorithm for envelope reduction of sparse matrices Numerical Linear Algebra With Applications. ,vol. 2, pp. 317- 334 ,(1995) , 10.1002/NLA.1680020402
C.W.S. Bruner, R.W. Walters, A comparison of different levels of approximation in implicit parallel solution algorithms for the Euler equations on unstructured grids Parallel Computational Fluid Dynamics 1995#R##N#Implementations and Results Using Parallel Computers. pp. 137- 144 ,(1996) , 10.1016/B978-044482322-9/50071-2