Correlation-energy functional and its high-density limit obtained from a coupling-constant perturbation expansion.

作者: Andreas Görling , Mel Levy

DOI: 10.1103/PHYSREVB.47.13105

关键词:

摘要: A perturbation theory is developed for the correlation energy ${\mathit{E}}_{\mathit{c}}$[n], of a finite-density system, with respect to coupling constant \ensuremath{\alpha} which multiplies electron-electron repulsion operator in ${\mathit{H}}^{\mathrm{\ensuremath{\alpha}}}$=T^+\ensuremath{\alpha}V${\mathrm{^}}_{\mathit{e}\mathit{e}}$+${\mathit{tsum}}_{\mathit{i}}$${\mathit{v}}_{\mathrm{\ensuremath{\alpha}}}$(${\mathbf{r}}_{\mathit{i}}$). The external potential ${\mathit{v}}_{\mathrm{\ensuremath{\alpha}}}$ constrained keep gound-state density n fixed all \ensuremath{\alpha}\ensuremath{\ge}0. given completely terms functional derivatives at full charge (\ensuremath{\alpha}=1), from ${\mathit{E}}_{\mathit{c}}$[${\mathit{n}}_{\ensuremath{\lambda}}$]=${\mathit{e}}_{\mathit{c},2}$[n]+ ${\ensuremath{\lambda}}^{\mathrm{\ensuremath{-}}1}$${\mathit{e}}_{\mathit{c},3}$[n]+${\ensuremath{\lambda}}^{\mathrm{\ensuremath{-}}2}$${\mathit{e}}_{\mathit{c},4}$[n]+..., where each ${\mathit{e}}_{\mathit{c},}$j[n] expressed integrals involving Kohn-Sham determinants. Here, ${\mathit{n}}_{\ensuremath{\lambda}}$(x,y,x)=${\ensuremath{\lambda}}^{3}$n(\ensuremath{\lambda}x,\ensuremath{\lambda}y,\ensuremath{\lambda}z) and \ensuremath{\lambda}=${\mathrm{\ensuremath{\alpha}}}^{\mathrm{\ensuremath{-}}1}$. identification ${\mathrm{lim}}_{\ensuremath{\lambda}\ensuremath{\rightarrow}\mathrm{\ensuremath{\infty}}}$${\mathit{E}}_{\mathit{c}}$[${\mathit{n}}_{\ensuremath{\lambda}}$], high-density limit, as second-order ${\mathit{e}}_{\mathit{c},2}$[n] allows one compute bounds upon ${\mathrm{lim}}_{\ensuremath{\lambda}\ensuremath{\rightarrow}\mathrm{\ensuremath{\infty}}}$${\mathit{E}}_{\mathit{c}}$[${\mathit{n}}_{\ensuremath{\lambda}}$]; imply that ${\mathrm{lim}}_{\ensuremath{\lambda}\ensuremath{\rightarrow}\mathrm{\ensuremath{\infty}}}$${\mathit{E}}_{\mathit{c}}$[${\mathit{n}}_{\ensuremath{\lambda}}$]\ensuremath{\simeq}${\mathit{E}}_{\mathit{c}}$[n] large class small atoms molecules, suggest ${\mathrm{lim}}_{\ensuremath{\lambda}\ensuremath{\rightarrow}\mathrm{\ensuremath{\infty}}}$${\mathit{E}}_{\mathit{c}}$[${\mathit{n}}_{\ensuremath{\lambda}}$] should be same order magnitude ${\mathit{E}}_{\mathit{c}}$[n] finite insulators semiconductors.

参考文章(20)
Mel Levy, Weitao Yang, Robert G. Parr, A new functional with homogeneous coordinate scaling in density functional theory: F [ ρ,λ] Journal of Chemical Physics. ,vol. 83, pp. 2334- 2336 ,(1985) , 10.1063/1.449326
Hui Ou-Yang, Mel Levy, Nonuniform coordinate scaling requirements in density-functional theory Physical Review A. ,vol. 42, pp. 155- 160 ,(1990) , 10.1103/PHYSREVA.42.155
Mel Levy, Hui Ou-Yang, Nonuniform coordinate scaling requirements for exchange-correlation energy. Physical Review A. ,vol. 42, pp. 651- 652 ,(1990) , 10.1103/PHYSREVA.42.651
J. P. Perdew, E. R. McMullen, Alex Zunger, Density-functional theory of the correlation energy in atoms and ions: A simple analytic model and a challenge Physical Review A. ,vol. 23, pp. 2785- 2789 ,(1981) , 10.1103/PHYSREVA.23.2785
Andreas Görling, Mel Levy, Requirements for correlation energy density functionals from coordinate transformations Physical Review A. ,vol. 45, pp. 1509- 1517 ,(1992) , 10.1103/PHYSREVA.45.1509
Andreas Görling, Mel Levy, John P. Perdew, Expectation values in density-functional theory, and kinetic contribution to the exchange-correlation energy Physical Review B. ,vol. 47, pp. 1167- 1173 ,(1993) , 10.1103/PHYSREVB.47.1167
Murray Gell-Mann, Keith A Brueckner, None, Correlation Energy of an Electron Gas at High Density Physical Review. ,vol. 106, pp. 364- 368 ,(1957) , 10.1103/PHYSREV.106.364