An ensemble approach to detect exudates in digital fundus images

作者: B V Shilpa , T N Nagabhushan

DOI: 10.1109/CCIP.2016.7802870

关键词:

摘要: Fundus Image analysis is a major concern with respect to various disease detection. Diabetic retinopathy (DR) seen in patients suffering from diabetes mellitus type 2 which leads blindness. images are used identify abnormalities like microaneurysms, haemorrhages, cotton wool spots, exudates, venous beading, and optic disc oedema that cause DR. Automated diagnosis of DR gives first-hand information about the presence, save diabetic vision loss. This paper presents novel ensemble approach automatically detect exudates fundus images. Normal background features removed initially. Morphological operations combined logical has enhanced detection marking exudates. Publicly available standard database DIARETDB1 Forus Health experiment algorithm. 89.6% specificity, 100% sensitivity obtained evaluated logistic regression classifier. Also, 89.13% positive predictive value negative this approach. The AUC ROC plot 0.969.

参考文章(13)
Tomi Kauppi, Valentina Kalesnykiene, Joni-Kristian Kamarainen, Lasse Lensu, Iiris Sorri, Asta Raninen, Raija Voutilainen, Hannu Uusitalo, Heikki Kälviäinen, Juhani Pietilä, the DIARETDB1 diabetic retinopathy database and evaluation protocol british machine vision conference. pp. 1- 10 ,(2007) , 10.5244/C.21.15
Vesna Zeljković, Milena Bojic, Shengwei Zhao, Claude Tameze, Ventzeslav Valev, Exudates and optic disk detection in retinal images of diabetic patients Concurrency and Computation: Practice and Experience. ,vol. 27, pp. 172- 192 ,(2015) , 10.1002/CPE.3215
Rajiv Raman, Suganeswari Ganesan, Swakshyar Saumya Pal, Vaitheeswaran Kulothungan, Tarun Sharma, Prevalence and risk factors for diabetic retinopathy in rural India. Sankara Nethralaya Diabetic Retinopathy Epidemiology and Molecular Genetic Study III (SN-DREAMS III), report no 2. BMJ open diabetes research & care. ,vol. 2, ,(2014) , 10.1136/BMJDRC-2013-000005
Akara Sopharak, Bunyarit Uyyanonvara, Sarah Barman, Thomas H. Williamson, AUTOMATIC DETECTION OF DIABETIC RETINOPATHY EXUDATES FROM NON-DILATED RETINAL IMAGES USING MATHEMATICAL MORPHOLOGY METHODS Computerized Medical Imaging and Graphics. ,vol. 32, pp. 720- 727 ,(2008) , 10.1016/J.COMPMEDIMAG.2008.08.009
Xiwei Zhang, Guillaume Thibault, Etienne Decencière, Beatriz Marcotegui, Bruno Laÿ, Ronan Danno, Guy Cazuguel, Gwénolé Quellec, Mathieu Lamard, Pascale Massin, Agnès Chabouis, Zeynep Victor, Ali Erginay, Exudate detection in color retinal images for mass screening of diabetic retinopathy Medical Image Analysis. ,vol. 18, pp. 1026- 1043 ,(2014) , 10.1016/J.MEDIA.2014.05.004
Agung W. Setiawan, Tati R. Mengko, Oerip S. Santoso, Andriyan B. Suksmono, Color retinal image enhancement using CLAHE International Conference on ICT for Smart Society. pp. 1- 3 ,(2013) , 10.1109/ICTSS.2013.6588092
Kittipol Wisaeng, Nualsawat Hiransakolwong, Automatic Detection of Exudates in Diabetic Retinopathy Images ,(2012)
Nobuyuki Otsu, A Threshold Selection Method from Gray-Level Histograms IEEE Transactions on Systems, Man, and Cybernetics. ,vol. 9, pp. 62- 66 ,(1979) , 10.1109/TSMC.1979.4310076
C. Sinthanayothin, J. F. Boyce, T. H. Williamson, H. L. Cook, E. Mensah, S. Lal, D. Usher, Automated detection of diabetic retinopathy on digital fundus images. Diabetic Medicine. ,vol. 19, pp. 105- 112 ,(2002) , 10.1046/J.1464-5491.2002.00613.X
John Canny, A Computational Approach to Edge Detection IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. PAMI-8, pp. 679- 698 ,(1986) , 10.1109/TPAMI.1986.4767851