Multi-Criteria Ant Feature Selection Using Fuzzy Classifiers

作者: Susana M Vieira , Joao MC Sousa , Thomas A Runkler , None

DOI: 10.1007/978-3-642-03625-5_2

关键词:

摘要: One of the most important techniques in data preprocessing for mining is feature selection. Real-world analysis, mining, classification and modeling problems usually involve a large number candidate inputs or features. Less relevant highly correlated features decrease, general, accuracy, enlarge complexity classifier. The goal to find reduced set that reveals best accuracy fuzzy This chapter presents an ant colony optimization (ACO) algorithm selection, which minimizes two objectives: error classification. Two pheromone matrices different heuristics are used each objective. performance method compared other selection methods, revealing similar higher performance.

参考文章(48)
Jan G. Bazan, Hung Son Nguyen, Sinh Hoa Nguyen, Piotr Synak, Jakub Wróblewski, Rough set algorithms in classification problem Rough set methods and applications. pp. 49- 88 ,(2000) , 10.1007/978-3-7908-1840-6_3
Olcay Boz, Feature Subset Selection by Using Sorted Feature Relevance. international conference on machine learning and applications. pp. 147- 153 ,(2002)
Uzay Kaymak, João M C Sousa, Fuzzy Decision Making in Modeling and Control ,(2002)
Patrick M. Murphy, Michael J. Pazzani, ID2-of-3: Constructive Induction of M-of-N Concepts for Discriminators in Decision Trees Machine Learning Proceedings 1991. pp. 183- 187 ,(1991) , 10.1016/B978-1-55860-200-7.50040-4
M. Dorigo, Optimization, Learning and Natural Algorithms Ph.D. Thesis, Politecnico di Milano, Italy. ,(1992)
Hans Roubos, Magne Setnes, Janos Abonyi, Learning Fuzzy Classification Rules from Data Developments in Soft Computing. pp. 108- 115 ,(2001) , 10.1007/978-3-7908-1829-1_13
David G. Stork, Richard O. Duda, Peter E. Hart, Pattern Classification (2nd ed.) ,(1999)
M. Schreyer, G.R. Raidl, Letting ants labeling point features [sic.: for 'labeling' read 'label'] congress on evolutionary computation. ,vol. 2, pp. 1564- 1569 ,(2002) , 10.1109/CEC.2002.1004475
Marco Dorigo, Mauro Birattari, Thomas Stutzle, Ant colony optimization: artificial ants as a computational intelligence technique IEEE Computational Intelligence Magazine. ,vol. 1, pp. 28- 39 ,(2006) , 10.1109/CI-M.2006.248054