A cost-effective method for improving and re-purposing large, pre-trained GANs by fine-tuning their class-embeddings

作者: Long Mai , Anh Nguyen , Michael A. Alcorn , Qi Li

DOI:

关键词:

摘要: Large, pre-trained generative models have been increasingly popular and useful to both the research and wider communities. Specifically, BigGANs a class-conditional Generative …

参考文章(26)
, Generative Adversarial Nets neural information processing systems. ,vol. 27, pp. 2672- 2680 ,(2014) , 10.3156/JSOFT.29.5_177_2
Simon Osindero, Mehdi Mirza, Conditional Generative Adversarial Nets arXiv: Learning. ,(2014)
Ilya Sutskever, Geoffrey E. Hinton, Alex Krizhevsky, ImageNet Classification with Deep Convolutional Neural Networks neural information processing systems. ,vol. 25, pp. 1097- 1105 ,(2012)
Andrea Vedaldi, Karen Simonyan, Andrew Zisserman, Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps arXiv: Computer Vision and Pattern Recognition. ,(2013)
Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, Zbigniew Wojna, Rethinking the Inception Architecture for Computer Vision computer vision and pattern recognition. pp. 2818- 2826 ,(2016) , 10.1109/CVPR.2016.308
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep Residual Learning for Image Recognition computer vision and pattern recognition. pp. 770- 778 ,(2016) , 10.1109/CVPR.2016.90
Anh Nguyen, Alexey Dosovitskiy, Jason Yosinski, Thomas Brox, Jeff Clune, None, Synthesizing the preferred inputs for neurons in neural networks via deep generator networks arXiv: Neural and Evolutionary Computing. ,(2016)
Tim Salimans, Ian Goodfellow, Alec Radford, Vicki Cheung, Wojciech Zaremba, Xi Chen, Improved Techniques for Training GANs arXiv: Learning. ,(2016)
Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, Alexei A. Efros, Generative Visual Manipulation on the Natural Image Manifold Computer Vision – ECCV 2016. pp. 597- 613 ,(2016) , 10.1007/978-3-319-46454-1_36
Jonathon Shlens, Christopher Olah, Augustus Odena, Conditional image synthesis with auxiliary classifier GANs international conference on machine learning. pp. 2642- 2651 ,(2017)