Fast and Accurate Solutions of Steady Stokes Flows Using Multilevel Boundary Element Methods

作者: G. F. Dargush , M. M. Grigoriev

DOI: 10.1115/1.1949648

关键词:

摘要: Most recently, we have developed a novel multilevel boundary element method (MLBEM) for steady Stokes flows in irregular two-dimensional domains (Grigoriev, M.M., and Dargush, G.F., Comput. Methods. Appl. Mech. Eng., 2005). The algorithm permitted solutions with slightly over 16,000 degrees of freedom, which approximately 40-fold speedups were demonstrated the fast MLBEM compared to conventional Gauss elimination approach. Meanwhile, sevenfold memory savings attained algorithm. This paper extends methodology dramatically improve performance original formulation flows. For model problem an pentagon, demonstrate that new reduces CPU times by factor nearly 700,000. requirements are reduced more than times. These superior run-time reductions regular methods achieved while preserving accuracy solution.

参考文章(25)
Cornelis H. Venner, A.A. Lubrecht, MultiLevel Methods in Lubrication ,(2013)
M.M. Grigoriev, G.F. Dargush, A fast multi-level boundary element method for the Helmholtz equation Computer Methods in Applied Mechanics and Engineering. ,vol. 193, pp. 165- 203 ,(2004) , 10.1016/J.CMA.2003.09.004
V Rokhlin, Rapid solution of integral equations of classical potential theory Journal of Computational Physics. ,vol. 60, pp. 187- 207 ,(1985) , 10.1016/0021-9991(85)90002-6
Eric Darve, The Fast Multipole Method: Numerical Implementation Journal of Computational Physics. ,vol. 160, pp. 195- 240 ,(2000) , 10.1006/JCPH.2000.6451
A. A. Lubrecht, E. Ioannides, A Fast Solution of the Dry Contact Problem and the Associated Sub-Surface Stress Field, Using Multilevel Techniques Journal of Tribology-transactions of The Asme. ,vol. 113, pp. 128- 133 ,(1991) , 10.1115/1.2920577
C.-H. Wang, M. M. Grigoriev, G. F. Dargush, A fast multi‐level convolution boundary element method for transient diffusion problems International Journal for Numerical Methods in Engineering. ,vol. 62, pp. 1895- 1926 ,(2005) , 10.1002/NME.1253
Ananth Grama, Vipin Kumar, Ahmed Sameh, Parallel Hierarchical Solvers and Preconditioners for Boundary Element Methods SIAM Journal on Scientific Computing. ,vol. 20, pp. 337- 358 ,(1998) , 10.1137/S1064827596313322
Martin Costabel, Boundary Integral Operators on Lipschitz Domains: Elementary Results SIAM Journal on Mathematical Analysis. ,vol. 19, pp. 613- 626 ,(1988) , 10.1137/0519043
K. Nabors, F. T. Korsmeyer, F. T. Leighton, J. White, Preconditioned, adaptive, multipole-accelerated iterative methods for three-dimensional first-kind integral equations of potential theory SIAM Journal on Scientific Computing. ,vol. 15, pp. 713- 735 ,(1994) , 10.1137/0915046