Abelian Hypergroups and Quantum Computation

作者: Kevin C. Zatloukal , Juan Bermejo-Vega

DOI:

关键词:

摘要: Motivated by a connection, described here for the rst time, between hidden normal subgroup problem (HNSP) and abelian hypergroups (algebraic objects that model collisions of physical particles), we develop stabilizer formalism using an associated classical simulation theorem (a la Gottesman-Knill). Using these tools, provably ecient quantum algorithm nding subhypergroups nilpotent and, via aforementioned new, hypergroup-based HNSP on groups. We also give methods manipulating non-unitary, non-monomial stabilizers adaptive Fourier sampling technique general interest.

参考文章(99)
Chris Lomont, THE HIDDEN SUBGROUP PROBLEM - REVIEW AND OPEN PROBLEMS arXiv: Quantum Physics. ,(2004)
S. Bravyi, A. Kitaev, Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) Physical Review A. ,vol. 71, pp. 22316- ,(2005)
Dmitry Gavinsky, Quantum solution to the hidden subgroup problem for poly-near-hamiltonian groups Quantum Information & Computation. ,vol. 4, pp. 229- 235 ,(2004) , 10.26421/QIC4.3-8
Yukio Tsushima, Hirosi Nagao, Representations of Finite Groups ,(1989)
Violeta Leoreanu, Piergiulio Corsini, Applications of Hyperstructure Theory ,(2010)
Herbert Heyer, Walter R. Bloom, Harmonic Analysis of Probability Measures on Hypergroups ,(1994)
A. Dehghan Nezhad, S. M. Moosavi Nejad, M. Nadjafikhah, B. Davvaz, The algebraic hyperstructure of elementary particles in physical theory arXiv: Mathematical Physics. ,(2010) , 10.1007/S12648-012-0151-X