Improved goodness-of-fit tests

作者: J. M. FINKELSTEIN , R. E. SCHAFER

DOI: 10.1093/BIOMET/58.3.641

关键词:

摘要: Two statistics for testing goodness of fit small sample sizes are provided. The first statistic, S, can be used to test the any completely specified continuous distribution function and is more powerful than Kolmogorov-Smirnov statistic in cases tested. second tests an exponential with mean unknown. It a type suggested by Lilliefors (1969) Critical values Sn given size n = 1(1) 20 (5) 30 x 0-20, 0415, 0-10, 0 05 0.01. critical power analyses were obtained Monte Carlo techniques. These new closely related computationally equivalent.

参考文章(6)
J. van Soest, Some goodness of fit tests for exponential distributions Statistica Neerlandica. ,vol. 23, pp. 41- 51 ,(1969) , 10.1111/J.1467-9574.1969.TB00072.X
Hubert W. Lilliefors, On the Kolmogorov-Smirnov Test for the Exponential Distribution with Mean Unknown Journal of the American Statistical Association. ,vol. 64, pp. 387- 389 ,(1969) , 10.1080/01621459.1969.10500983
Hans Riedwyl, Goodness of Fit Journal of the American Statistical Association. ,vol. 62, pp. 390- 398 ,(1967) , 10.1080/01621459.1967.10482915
Z. W. Birnbaum, Numerical Tabulation of the Distribution of Kolmogorov's Statistic for Finite Sample Size Journal of the American Statistical Association. ,vol. 47, pp. 425- 441 ,(1952) , 10.2307/2281313
Frank J. Massey, The Kolmogorov-Smirnov Test for Goodness of Fit Journal of the American Statistical Association. ,vol. 46, pp. 68- 78 ,(1951) , 10.2307/2280095