Mining multi-site clinical data to develop machine learning MRI biomarkers: application to neonatal hypoxic ischemic encephalopathy.

作者: Rebecca J. Weiss , Sara V. Bates , Ya’nan Song , Yue Zhang , Emily M. Herzberg

DOI: 10.1186/S12967-019-2119-5

关键词:

摘要: Secondary and retrospective use of hospital-hosted clinical data provides a time- cost-efficient alternative to prospective trials for biomarker development. This study aims create dataset Magnetic Resonance Images (MRI) records neonatal hypoxic ischemic encephalopathy (HIE), from which clinically-relevant analytic algorithms can be developed MRI-based HIE lesion detection outcome prediction. will registries big informatics tools build multi-site that contains structural diffusion MRI, information including hospital course, short-term outcomes (during infancy), long-term (~ 2 years age) at least 300 patients multiple hospitals. Within machine learning frameworks, we test whether the quantified deviation our recently-developed normative brain atlases detect abnormal regions predict individual as accurately as, or even more accurately, than human experts. Trial Registration Not applicable. protocol mines existing thus does not meet ICMJE definition trial requires registration

参考文章(122)
Matthew Wiener, Andy Liaw, Classification and Regression by randomForest ,(2007)
Yangming Ou, Randy L Gollub, Kallirroi Retzepi, Nathaniel Reynolds, Rudolph Pienaar, Steve Pieper, Shawn N Murphy, P Ellen Grant, Lilla Zöllei, None, Brain extraction in pediatric ADC maps, toward characterizing neuro-development in multi-platform and multi-institution clinical images. NeuroImage. ,vol. 122, pp. 246- 261 ,(2015) , 10.1016/J.NEUROIMAGE.2015.08.002
Henry C. Chueh, Shawn N. Murphy, Diane Keogh, Ruth Nalichowski, Calculating the benefits of a Research Patient Data Repository. american medical informatics association annual symposium. ,vol. 2006, pp. 1044- 1044 ,(2006)
Bernhard Schölkopf, Alexander J. Smola, Learning with Kernels The MIT Press. pp. 626- ,(2018) , 10.7551/MITPRESS/4175.001.0001
Khan M. Iftekharuddin, Brian B. Avants, Max Wintermark, Doina Precup, Jayashree Kalpathy-Cramer, Antonio Criminisi, Michel Dojat, Ender Konukoglu, Polina Golland, Herve Delingette, Andac Hamamci, Nagesh K. Subbanna, Nicholas J. Tustison, Tal Arbel, Yuliya Burren, Darko Zikic, Duygu Sarikaya, Ben Glocker, Gabor Szekely, Joana Festa, Gozde Unal, Stefan Bauer, Cagatay Demiralp, Ezequiel Geremia, Bjoern H. Menze, Andras Jakab, Jamie Shotton, Marcel Prastawa, Jason J. Corso, Nicolas Cordier, Syed M. S. Reza, Michael Ryan, Stephen J. Price, Danial Lashkari, Senan Doyle, Lawrence Schwartz, D. Louis Collins, Hoo-Chang Shin, Keyvan Farahani, Xiaotao Guo, Marc-Andre Weber, Nicholas Ayache, Florence Forbes, Sergio Pereira, Owen M. Thomas, Roland Wiest, Johannes Slotboom, Christopher R. Durst, Nuno Sousa, Raphael Meier, Levente Lanczi, Elizabeth Gerstner, Tilak Das, Mauricio Reyes, Koen Van Leemput, Liang Zhao, Raj Jena, Jose Antonio Mariz, Flor Vasseur, Binsheng Zhao, Thomas J. Taylor, Nigel M. John, Nicole Porz, Dong Hye Ye, Tammy Riklin Raviv, Patricia Buendia, Justin Kirby, Carlos A. Silva, The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) IEEE Transactions on Medical Imaging. ,vol. 34, pp. 1993- 2024 ,(2015) , 10.1109/TMI.2014.2377694
Michael E Tipping, Sparse bayesian learning and the relevance vector machine Journal of Machine Learning Research. ,vol. 1, pp. 211- 244 ,(2001) , 10.1162/15324430152748236
Mohammad Havaei, Axel Davy, David Warde-Farley, Antoine Biard, Aaron Courville, Yoshua Bengio, Chris Pal, Pierre-Marc Jodoin, Hugo Larochelle, Brain tumor segmentation with Deep Neural Networks Medical Image Analysis. ,vol. 35, pp. 18- 31 ,(2017) , 10.1016/J.MEDIA.2016.05.004
Philipp Fischer, Thomas Brox, None, U-Net: Convolutional Networks for Biomedical Image Segmentation medical image computing and computer assisted intervention. pp. 234- 241 ,(2015) , 10.1007/978-3-319-24574-4_28
Ailton Andrade de Oliveira, Maria Teresa Carthery-Goulart, Pedro Paulo de Magalhães Oliveira, Daniel Carneiro Carrettiero, João Ricardo Sato, , Defining multivariate normative rules for healthy aging using neuroimaging and machine learning: an application to Alzheimer's disease. Journal of Alzheimer's Disease. ,vol. 43, pp. 201- 212 ,(2014) , 10.3233/JAD-140189
D M Ferriero, D Vigneron, B L Hajnal, A J Barkovich, A Sola, F Allen, J C Partridge, Prediction of neuromotor outcome in perinatal asphyxia: evaluation of MR scoring systems. American Journal of Neuroradiology. ,vol. 19, pp. 143- 149 ,(1998)