X-ray Tomography

作者: Frank Natterer , None

DOI: 10.1007/978-3-540-78547-7_2

关键词:

摘要: We give a survey on the mathematics of computerized tomography. start with short introduction to integral geometry, concentrating inversion formulas, stability, and ranges. then go over algorithms. detailed analysis filtered backprojection algorithm in light sampling theorem. also describe convergence properties iterative shortly mention Fourier based algorithms recent progresses made their accurate implementation. conclude basics for cone beam scanning which is standard mode present days clinical practice.

参考文章(64)
Gabriele Steidl, A note on fast Fourier transforms for nonequispaced grids Advances in Computational Mathematics. ,vol. 9, pp. 337- 352 ,(1998) , 10.1023/A:1018901926283
Sigurdur Helgason, S Helgason, None, The Radon Transform ,(1980)
Norman Bleistein, J. W. Stockwell, Jack K. Cohen, Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion ,(2013)
M D Collins, W A Kuperman, Inverse problems in ocean acoustics Inverse Problems. ,vol. 10, pp. 1023- 1040 ,(1994) , 10.1088/0266-5611/10/5/003
Oliver Dorn, A transport-backtransport method for optical tomography Inverse Problems. ,vol. 14, pp. 1107- 1130 ,(1998) , 10.1088/0266-5611/14/5/003
Darrell R. Jackson, David R. Dowling, Phase conjugation in underwater acoustics The Journal of the Acoustical Society of America. ,vol. 89, pp. 171- 181 ,(1991) , 10.1121/1.400496
O Dorn, H Bertete-Aguirre, J G Berryman, G C Papanicolaou, A nonlinear inversion method for 3D electromagnetic imaging using adjoint fields Inverse Problems. ,vol. 15, pp. 1523- 1558 ,(1999) , 10.1088/0266-5611/15/6/309