A review of “perceptrons: An introduction to computational geometry≓

作者: H.D. Block

DOI: 10.1016/S0019-9958(70)90409-2

关键词:

摘要:

参考文章(40)
Donald O. Hebb, The organization of behavior Neurocomputing: foundations of research. pp. 43- 54 ,(1988)
Walter Pitts, Warren S. McCulloch, How we know universals: the perception of auditory and visual forms Bulletin of Mathematical Biology. ,vol. 9, pp. 29- 41 ,(1988) , 10.1007/BF02478291
Thomas M. Cover, LEARNING IN PATTERN RECOGNITION Methodologies of Pattern Recognition. pp. 111- 132 ,(1969) , 10.1016/B978-1-4832-3093-1.50012-2
Stephen Cole Kleene, Representation of Events in Nerve Nets and Finite Automata Princeton University Press. pp. 3- 42 ,(1951) , 10.1515/9781400882618-002
Alan G. Konheim, A Geometric Convergence Theorem for the Perceptron Journal of The Society for Industrial and Applied Mathematics. ,vol. 11, pp. 1- 14 ,(1963) , 10.1137/0111001
Robert J. Baron, A model for the elementary visual networks of the human brain International Journal of Human-computer Studies \/ International Journal of Man-machine Studies. ,vol. 2, pp. 267- 290 ,(1970) , 10.1016/S0020-7373(70)80010-4
J. Sklansky, Recognition of convex blobs Pattern Recognition. ,vol. 2, pp. 3- 10 ,(1970) , 10.1016/0031-3203(70)90037-3
N. E. Miller, Learning of Visceral and Glandular Responses Science. ,vol. 163, pp. 434- 445 ,(1969) , 10.1126/SCIENCE.163.3866.434