Unsupervised bird song syllable classification using evolving neural networks

作者: Louis Ranjard , Howard A. Ross

DOI: 10.1121/1.2903861

关键词:

摘要: … they contain signals of individual, population, and species relationships. In order to retrieve this information, … songs are generally high-pitched and field recordings contain low frequency …

参考文章(22)
Jussi Pakkanen, Jukka Iivarinen, Erkki Oja, The Evolving Tree—A Novel Self-Organizing Network for Data Analysis Neural Processing Letters. ,vol. 20, pp. 199- 211 ,(2004) , 10.1007/S11063-004-2156-8
Sven E. Anderson, Amish S. Dave, Daniel Margoliash, Template-based automatic recognition of birdsong syllables from continuous recordings Journal of the Acoustical Society of America. ,vol. 100, pp. 1209- 1219 ,(1996) , 10.1121/1.415968
Judith C. Brown, Andrea Hodgins-Davis, Patrick J. O. Miller, Classification of vocalizations of killer whales using dynamic time warping Journal of the Acoustical Society of America. ,vol. 119, ,(2006) , 10.1121/1.2166949
Mark D. Skowronski, John G. Harris, Acoustic detection and classification of microchiroptera using machine learning: Lessons learned from automatic speech recognition Journal of the Acoustical Society of America. ,vol. 119, pp. 1817- 1833 ,(2006) , 10.1121/1.2166948
P. Marler, M. Tamura, CULTURALLY TRANSMITTED PATTERNS OF VOCAL BEHAVIOR IN SPARROWS. Science. ,vol. 146, pp. 1483- 1486 ,(1964) , 10.1126/SCIENCE.146.3650.1483
T. Kohonen, The self-organizing map Proceedings of the IEEE. ,vol. 78, pp. 1464- 1480 ,(1990) , 10.1109/5.58325
Panu Somervuo, Teuvo Kohonen, Self-Organizing Maps and Learning Vector Quantization forFeature Sequences Neural Processing Letters. ,vol. 10, pp. 151- 159 ,(1999) , 10.1023/A:1018741720065
Hans Slabbekoorn, Ardie den Boer-Visser, Cities Change the Songs of Birds Current Biology. ,vol. 16, pp. 2326- 2331 ,(2006) , 10.1016/J.CUB.2006.10.008