Piezoelectric and ferroelectric property in Mn-doped 0.69BiFeO3–0.04Bi(Zn1/2Ti1/2)O3–0.27BaTiO3 lead-free piezoceramics

作者: Yang Lin , Linlin Zhang , Jian Yu

DOI: 10.1007/S10854-015-3978-Z

关键词:

摘要: In this article, rhombohedral 0.69BiFeO3–0.04Bi(Zn1/2Ti1/2)O3–0.27BaTiO3 (BF69–BZT4–BT27) lead-free piezoceramics were studied for the sake of obtaining high Curie point and piezoresponse. compositional engineering approach, A-site vacancies with various concentrations introduced in advance into ferroelectric ceramics by using low purities raw oxides doping MnO2. contrast to lossy BF–BT ceramics, very dielectric loss tanδ ~ 0.03 was obtained BF69–BZT4–BT27 through adding BZT third member stabilize perovskite phase MnO2 reduce oxygen a refined solid state reaction electroceramic processing. A good combination piezoelectric property 0.17 wt% MnO2-doped coarse-grained remanent polarization Pr = 32.3 μC/cm2, constant d33 145 pC/N, thickness electromechanical coupling coefficient kt 0.41 temperature TC 510 °C. The intrinsic response observed correlation switching power described constant, which is affected some extrinsic factors such as defects, microstructure grain size, residual internal stresses. Excellent thermal aging stability also experimentally demonstrated argued resulting from higher no ferroelectric–ferroelectric structural transition below BF–BZT–BT system.

参考文章(39)
Don Berlincourt, Piezoelectric Crystals and Ceramics Ultrasonic Transducer Materials. pp. 63- 124 ,(1971) , 10.1007/978-1-4757-0468-6_2
R. Guo, L. E. Cross, S-E. Park, B. Noheda, D. E. Cox, G. Shirane, Origin of the high piezoelectric response in PbZr1-xTixO3 Physical Review Letters. ,vol. 84, pp. 5423- 5426 ,(2000) , 10.1103/PHYSREVLETT.84.5423
I. Sterianou, D. C. Sinclair, I. M. Reaney, T. P. Comyn, A. J. Bell, Investigation of high Curie temperature (1−x)BiSc1−yFeyO3–xPbTiO3 piezoelectric ceramics Journal of Applied Physics. ,vol. 106, pp. 084107- ,(2009) , 10.1063/1.3253585
M. Mahesh Kumar, A. Srinivas, S. V. Suryanarayana, Structure property relations in BiFeO3/BaTiO3 solid solutions Journal of Applied Physics. ,vol. 87, pp. 855- 862 ,(2000) , 10.1063/1.371953
Ichiro Fujii, Ryuta Mitsui, Kouichi Nakashima, Nobuhiro Kumada, Mikio Shimada, Takayuki Watanabe, Jumpei Hayashi, Hisato Yabuta, Makoto Kubota, Tetsuro Fukui, Satoshi Wada, Structural, Dielectric, and Piezoelectric Properties of Mn-Doped BaTiO3–Bi(Mg1/2Ti1/2)O3–BiFeO3Ceramics Japanese Journal of Applied Physics. ,vol. 50, ,(2011) , 10.7567/JJAP.50.09ND07
Yongxing Wei, Xiaotao Wang, Jintao Zhu, Xiaoli Wang, Jiangjiang Jia, Dielectric, Ferroelectric, and Piezoelectric Properties of BiFeO3–BaTiO3 Ceramics Journal of the American Ceramic Society. ,vol. 96, pp. 3163- 3168 ,(2013) , 10.1111/JACE.12475
Thomas R. Shrout, Shujun J. Zhang, Lead-free piezoelectric ceramics: Alternatives for PZT? Journal of Electroceramics. ,vol. 19, pp. 113- 126 ,(2007) , 10.1007/S10832-007-9047-0
Serhiy O. Leontsev, Richard E. Eitel, Dielectric and Piezoelectric Properties in Mn‐Modified (1−x)BiFeO3–xBaTiO3 Ceramics Journal of the American Ceramic Society. ,vol. 92, pp. 2957- 2961 ,(2009) , 10.1111/J.1551-2916.2009.03313.X
Su-Chul Yang, Ashok Kumar, Valeri Petkov, Shashank Priya, Room-temperature magnetoelectric coupling in single-phase BaTiO3-BiFeO3 system Journal of Applied Physics. ,vol. 113, pp. 144101- ,(2013) , 10.1063/1.4799591
Serhiy O Leontsev, Richard E Eitel, Progress in engineering high strain lead-free piezoelectric ceramics Science and Technology of Advanced Materials. ,vol. 11, pp. 044302- 044302 ,(2010) , 10.1088/1468-6996/11/4/044302