A Novel Aggregation Method based on Graph Matching for Algebraic MultiGrid Preconditioning of Sparse Linear Systems

作者: Pasqua d'Ambra , Daniela Di Serafino , Bora Uçar , Simone Gentile , Salvatore Filippone

DOI:

关键词:

摘要: Multilevel techniques are very effective tools for preconditioning iterative Krylov methods in the solution of sparse linear systems; among them, Algebraic MultiGrid (AMG) widely employed variants. In [2, 4] it is shown how parallel smoothed aggregation can be used combination with domain decomposition Schwarz preconditioners to obtain AMG preconditioners; effectiveness such a results from fact that use coarse grids induces higher coupling between subdomains defined framework.

参考文章(9)
G. Lube, L. Müller, F. C. Otto, Energy optimization of algebraic multigrid bases Computing. ,vol. 62, pp. 205- 228 ,(1999) , 10.1007/S006070050003
Marzio Sala, Raymond S. Tuminaro, A New Petrov-Galerkin Smoothed Aggregation Preconditioner for Nonsymmetric Linear Systems SIAM Journal on Scientific Computing. ,vol. 31, pp. 143- 166 ,(2008) , 10.1137/060659545
Marian Brezina, Petr Vaněk, A black-box iterative solver based on a two-level Schwarz method Computing. ,vol. 63, pp. 233- 263 ,(1999) , 10.1007/S006070050033
Pasqua D’Ambra, Daniela Di Serafino, Salvatore Filippone, MLD2P4: A Package of Parallel Algebraic Multilevel Domain Decomposition Preconditioners in Fortran 95 ACM Transactions on Mathematical Software. ,vol. 37, pp. 30- ,(2010) , 10.1145/1824801.1824808
IS Duff, J Koster, On algorithms for permuting large entries to the diagonal of a sparse matrix Rutherford Appleton Laboratory Technical Reports. ,(1999)
J. W. Ruge, K. Stüben, 4. Algebraic Multigrid Multigrid Methods. pp. 73- 130 ,(1987) , 10.1137/1.9781611971057.CH4
Michael W Gee, Christopher M Siefert, Jonathan J Hu, Ray S Tuminaro, Marzio G Sala, ML 5.0 Smoothed Aggregation User's Guide ,(2006)