Rao-Blackwellisation of sampling schemes

作者: George Casella , Christian P Robert

DOI: 10.1093/BIOMET/83.1.81

关键词:

摘要: SUMMARY This paper proposes a post-simulation improvement for two common Monte Carlo methods, the Accept-Reject and Metropolis algorithms. The is based on Rao-Blackwellisation method that integrates over uniform random variables involved in algorithms, thus post-processes standard estimators. We show how Rao-Blackwellised versions of these algorithms can be implemented and, through examples, illustrate variance brought by new procedures. also compare improved version algorithm with ordinary importance sampling procedures independent general set-ups.

参考文章(11)
Jun S. Liu, Wing H. Wong, Augustine Kong, Covariance Structure and Convergence Rate of the Gibbs Sampler with Various Scans Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 57, pp. 157- 169 ,(1995) , 10.1111/J.2517-6161.1995.TB02021.X
K. L. Mengersen, R. L. Tweedie, Rates of convergence of the Hastings and Metropolis algorithms Annals of Statistics. ,vol. 24, pp. 101- 121 ,(1996) , 10.1214/AOS/1033066201
Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, Edward Teller, Equation of State Calculations by Fast Computing Machines The Journal of Chemical Physics. ,vol. 21, pp. 1087- 1092 ,(1953) , 10.1063/1.1699114
Alan E. Gelfand, Adrian F. M. Smith, Sampling-Based Approaches to Calculating Marginal Densities Journal of the American Statistical Association. ,vol. 85, pp. 398- 409 ,(1990) , 10.1080/01621459.1990.10476213
Erich Leo Lehmann, Theory of point estimation ,(1950)
Luke Tierney, Markov Chains for Exploring Posterior Distributions Annals of Statistics. ,vol. 22, pp. 1701- 1728 ,(1994) , 10.1214/AOS/1176325750