An equiconsistency result on partial squares

作者: JOHN KRUEGER , ERNEST SCHIMMERLING

DOI: 10.1142/S0219061311000992

关键词:

摘要: We prove that the following two statements are equiconsistent: there exists a greatly Mahlo cardinal; regular uncountable cardinal κ such no stationary subset of κ+ ∩ cof(κ) carries partial square.

参考文章(12)
Saharon Shelah, Proper and Improper Forcing ,(1998)
Menachem Magidor, Reflecting Stationary Sets Journal of Symbolic Logic. ,vol. 47, pp. 755- 771 ,(1982) , 10.2307/2273097
Douglas Burke, Generic embeddings and the failure of box Proceedings of the American Mathematical Society. ,vol. 123, pp. 2867- 2871 ,(1995) , 10.1090/S0002-9939-1995-1257099-0
Boban Veličković, Jensen's ⃞ principles and the Novák number of partially ordered sets Journal of Symbolic Logic. ,vol. 51, pp. 47- 58 ,(1986) , 10.2307/2273941
Saharon Shelah, Reflecting stationary sets and successors of singular cardinals Archive for Mathematical Logic. ,vol. 31, pp. 25- 53 ,(1991) , 10.1007/BF01370693
John Krueger, Weak compactness and no partial squares Journal of Symbolic Logic. ,vol. 76, pp. 1035- 1060 ,(2011) , 10.2178/JSL/1309952533
Ernest Schimmerling, Coherent sequences and threads Advances in Mathematics. ,vol. 216, pp. 89- 117 ,(2007) , 10.1016/J.AIM.2007.05.005
William J. Mitchell, A weak variation of Shelah’s I[ω2] Journal of Symbolic Logic. ,vol. 69, pp. 94- 100 ,(2004) , 10.2178/JSL/1080938829
R.Björn Jensen, The fine structure of the constructible hierarchy Annals of Mathematical Logic. ,vol. 4, pp. 229- 308 ,(1972) , 10.1016/0003-4843(72)90001-0