Minimum pickup velocity ( U pu ) of nanoparticles in gas-solid pneumatic conveying

作者: Aditya Anantharaman , J. Ruud van Ommen , Jia Wei Chew

DOI: 10.1007/S11051-015-3283-Z

关键词:

摘要: This paper is the first systematic study of pneumatic conveying nanoparticles. The minimum pickup velocity, Upu, six nanoparticle species different materials [i.e., silicon dioxide (SiO2), aluminum oxide (Al2O3), and titanium (TiO2)] surfaces (i.e., apolar polar) was determined by weight loss method. Results show that (1) due to relative lack hydrogen bonding, nanoparticles had higher mass values at same velocities, curves with accentuated S-shaped profiles, lower Upu values, (2) among three species, SiO2, which has lowest Hamaker coefficient, exhibited greatest discrepancy between polar respect both (3) Umf,polar/Umf,apolar 1 3.5 times Upu,polar/Upu,apolar greater extents bonding associated Umf, (4) were least an order-of-magnitude than expected from well-acknowledged correlation (Kalman et al., Powder Technol 160:103–113, 2005) agglomeration, (5) although should be categorized as Zone III al. (or Geldart group C, 7:285–292, 1973), nanoparticles, primary complex agglomerates agreed more I B) correlation.

参考文章(39)
A. Shabeer, K. Chandrashekhara, T. Schuman, Synthesis and Characterization of Soy-based Nanocomposites: Journal of Composite Materials. ,vol. 41, pp. 1825- 1849 ,(2007) , 10.1177/0021998307069896
Lilian de Martín, J. Sánchez-Prieto, F. Hernández-Jiménez, J. Ruud van Ommen, A settling tube to determine the terminal velocity and size distribution of fluidized nanoparticle agglomerates Journal of Nanoparticle Research. ,vol. 16, pp. 2183- ,(2014) , 10.1007/S11051-013-2183-3
Jose Manuel Valverde, Antonio Castellanos, None, Fluidization, bubbling and jamming of nanoparticle agglomerates Chemical Engineering Science. ,vol. 62, pp. 6947- 6956 ,(2007) , 10.1016/J.CES.2007.08.050
J. Ruud van Ommen, Dirkjan Kooijman, Mark de Niet, Mojgan Talebi, Aristeidis Goulas, Continuous production of nanostructured particles using spatial atomic layer deposition Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. ,vol. 33, pp. 021513- ,(2015) , 10.1116/1.4905725
Burkhard Stahlmecke, Sandra Wagener, Christof Asbach, Heinz Kaminski, Heinz Fissan, Thomas A. J. Kuhlbusch, Investigation of airborne nanopowder agglomerate stability in an orifice under various differential pressure conditions Journal of Nanoparticle Research. ,vol. 11, pp. 1625- 1635 ,(2009) , 10.1007/S11051-009-9731-X
E. Rabinovich, H. Kalman, Generalized master curve for threshold superficial velocities in particle–fluid systems Powder Technology. ,vol. 183, pp. 304- 313 ,(2008) , 10.1016/J.POWTEC.2007.07.030
Bedri Erdem, Robert A. Hunsicker, Gary W. Simmons, E. David Sudol, Victoria L. Dimonie, Mohamed S. El-Aasser, XPS and FTIR Surface Characterization of TiO2 Particles Used in Polymer Encapsulation Langmuir. ,vol. 17, pp. 2664- 2669 ,(2001) , 10.1021/LA0015213
Lilian de Martín, Andrea Fabre, J. Ruud van Ommen, The fractal scaling of fluidized nanoparticle agglomerates Chemical Engineering Science. ,vol. 112, pp. 79- 86 ,(2014) , 10.1016/J.CES.2014.03.024
Kimberly S Hayden, Kinam Park, Jennifer S Curtis, Effect of particle characteristics on particle pickup velocity Powder Technology. ,vol. 131, pp. 7- 14 ,(2003) , 10.1016/S0032-5910(02)00135-3