The arules R-Package Ecosystem: Analyzing Interesting Patterns from Large Transaction Data Sets

作者: Michael Hahsler , Kurt Hornik , Christian Buchta , Sudheer Chelluboina

DOI:

关键词:

摘要: This paper describes the ecosystem of R add-on packages developed around infrastructure provided by package arules. The provide comprehensive functionality for analyzing interesting patterns including frequent itemsets, association rules, sequences and building applications like associative classification. After discussing ecosystem's design we illustrate ease mining visualizing rules with a short example.

参考文章(11)
C Borgelt, EFFICIENT IMPLEMENTATIONS OF APRIORI AND ECLAT PROC OF THE IEEE ICDM WORKSHOP ON FREQUENT ITEMSET MINING IMPLEMENTATIONS. pp. 0- 0 ,(2003)
Dario Bruzzese, Cristina Davino, Visual Mining of Association Rules Visual Data Mining. ,vol. 4404, pp. 103- 122 ,(2008) , 10.1007/978-3-540-71080-6_8
Mohammed J. Zaki, SPADE: An Efficient Algorithm for Mining Frequent Sequences Machine Learning. ,vol. 42, pp. 31- 60 ,(2001) , 10.1023/A:1007652502315
Michael Hahsler, Kurt Hornik, New probabilistic interest measures for association rules intelligent data analysis. ,vol. 11, pp. 437- 455 ,(2007) , 10.3233/IDA-2007-11502
Mojdeh Jalali-Heravi, Osmar R. Zaïane, A study on interestingness measures for associative classifiers acm symposium on applied computing. pp. 1039- 1046 ,(2010) , 10.1145/1774088.1774306
Michael Hahsler, Kurt Hornik, Christian Buchta, Selective association rule generation Computational Statistics. ,vol. 23, pp. 303- 315 ,(2008) , 10.1007/S00180-007-0062-Z
Michael Hahsler, A Model-Based Frequency Constraint for Mining Associations from Transaction Data Data Mining and Knowledge Discovery. ,vol. 13, pp. 137- 166 ,(2006) , 10.1007/S10618-005-0026-2
Michael Hahsler, Bettina Grün, Kurt Hornik, arules - A Computational Environment for Mining Association Rules and Frequent Item Sets Journal of Statistical Software. ,vol. 14, pp. 1- 25 ,(2005) , 10.18637/JSS.V014.I15
Wynne Hsu, Yiming Ma, Bing Liu, Integrating classification and association rule mining knowledge discovery and data mining. pp. 80- 86 ,(1998)