Logarithmic transformation bias in allometry

作者: Richard J. Smith

DOI: 10.1002/AJPA.1330900208

关键词:

摘要: … However, if the distribution of residuals in log space is not normal, the bias of the s2/2 estimate becomes severe as s2 enters the range of 0.75-1.0. Selection between these two …

参考文章(96)
I. G. Evans, S. A. Shaban, POINT ESTIMATION IN MULTIPLICATIVE MODELS Econometrica. ,vol. 44, pp. 467- 473 ,(1976) , 10.2307/1913975
D. G. Sprugel, Correcting for Bias in Log-Transformed Allometric Equations Ecology. ,vol. 64, pp. 209- 210 ,(1983) , 10.2307/1937343
ØYSTEIN WIIG, Craniometric variation in Norwegian wolverines Gulo gulo L. Zoological Journal of the Linnean Society. ,vol. 95, pp. 177- 204 ,(1989) , 10.1111/J.1096-3642.1998.TB01990.X
Dennis Leech, Testing the Error Specification in Nonlinear Regression Econometrica. ,vol. 43, pp. 719- 725 ,(1975) , 10.2307/1913080
Dan Bradu, Yair Mundlak, Estimation in Lognormal Linear Models Journal of the American Statistical Association. ,vol. 65, pp. 198- 211 ,(1970) , 10.1080/01621459.1970.10481074
John J. Beauchamp, Jerry S. Olson, Corrections for Bias in Regression Estimates After Logarithmic Transformation Ecology. ,vol. 54, pp. 1403- 1407 ,(1973) , 10.2307/1934208
Jeremy M. G. Taylor, The Retransformed Mean after a Fitted Power Transformation Journal of the American Statistical Association. ,vol. 81, pp. 114- 118 ,(1986) , 10.1080/01621459.1986.10478246