Lipschitz and differentiability properties of quasi-concave and singular normal distribution functions

作者: René Henrion , Werner Römisch

DOI: 10.1007/S10479-009-0598-0

关键词:

摘要: The paper provides a condition for differentiability as well an equivalent criterion Lipschitz continuity of singular normal distributions. Such distributions are interest, instance, in stochastic optimization problems with probabilistic constraints, where comparatively small (nondegenerate-) normally distributed random vector induces large number linear inequality constraints (e.g. networks demands). is established the class quasi-concave which distribution belongs to.

参考文章(13)
René Henrion, Werner Römisch, Metric regularity and quantitative stability in stochastic programs with probabilistic constraints Mathematical Programming. ,vol. 84, pp. 55- 88 ,(1999) , 10.1007/S10107980016A
Henry P. Wynn, Daniel Q. Naiman, Abstract tubes, improved inclusion-exclusion identities and inequalities and importance sampling Annals of Statistics. ,vol. 25, pp. 1954- 1983 ,(1997) , 10.1214/AOS/1069362380
C. Borell, CONVEX SET FUNCTIONS IN d-SPACE Periodica Mathematica Hungarica. ,vol. 6, pp. 111- 136 ,(1975) , 10.1007/BF02018814
Horand I Gassmann, I Deák, Tamás Szántai, Computing Multivariate Normal Probabilities: A New Look Journal of Computational and Graphical Statistics. ,vol. 11, pp. 920- 949 ,(2002) , 10.1198/106186002321018876
Alan Genz, Numerical Computation of Multivariate Normal Probabilities Journal of Computational and Graphical Statistics. ,vol. 1, pp. 141- 149 ,(1992) , 10.1080/10618600.1992.10477010
Werner Römisch, Rüdiger Schultz, Stability of solutions for stochastic programs with complete recourse Mathematics of Operations Research. ,vol. 18, pp. 590- 609 ,(1993) , 10.1287/MOOR.18.3.590
Tamas Szantai, Jozsef Bukszar, René Henrion, Mihaly Hujter, Polyhedral inclusion-exclusion Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik. ,(2004) , 10.18452/2954
András Prékopa, Stochastic programming ,(1995)