Frame reconstruction of the Laplacian pyramid

作者: M.N. Do , M. Vetterli

DOI: 10.1109/ICASSP.2001.940631

关键词:

摘要: We study the Laplacian pyramid (LP) as a frame operator, and this reveals that usual reconstruction is suboptimal. With orthogonal filters, LP shown to be tight frame, thus optimal linear using dual operator has simple structure symmetrical with forward transform. For more general cases, we propose an efficient filter bank for in perform better than method. Numerical results indicate gains of 1 dB are actually achieved.

参考文章(9)
Roger A. Horn, Charles R. Johnson, Matrix Analysis Cambridge University Press. ,(1985) , 10.1017/CBO9780511810817
P. P. Vaidyanathan, Multirate Systems and Filter Banks ,(1992)
Vivek K. Goyal, Jelena Kovačević, Jonathan A. Kelner, Quantized Frame Expansions with Erasures Applied and Computational Harmonic Analysis. ,vol. 10, pp. 203- 233 ,(2001) , 10.1006/ACHA.2000.0340
Michael Unser, An improved least squares Laplacian pyramid for image compression Signal Processing. ,vol. 27, pp. 187- 203 ,(1992) , 10.1016/0165-1684(92)90007-J
Ingrid Daubechies, Ten Lectures on Wavelets ,(1992)
M. Unser, A. Aldroubi, A general sampling theory for nonideal acquisition devices IEEE Transactions on Signal Processing. ,vol. 42, pp. 2915- 2925 ,(1994) , 10.1109/78.330352
P. Burt, E. Adelson, The Laplacian Pyramid as a Compact Image Code IEEE Transactions on Communications. ,vol. 31, pp. 671- 679 ,(1983) , 10.1109/TCOM.1983.1095851
M.N. Do, M. Vetterli, Pyramidal directional filter banks and curvelets international conference on image processing. ,vol. 3, pp. 158- 161 ,(2001) , 10.1109/ICIP.2001.958075
Charles R. Johnson, Roger A. Horn, Matrix Analysis ,(1985)