Generalized Anti-Wick Operators with Symbols in Distributional Sobolev spaces

作者: Paolo Boggiatto , Elena Cordero , Karlheinz Gr�chenig

DOI: 10.1007/S00020-003-1244-X

关键词:

摘要: Generalized Anti-Wick operators are introduced as a class of pseudodifferential which depend on symbol and two different window functions. Using symbols in Sobolev spaces with negative smoothness and windows so-called modulation spaces, we derive new conditions for the boundedness L 2 such their membership the Schatten classes. These results extend refine contained [20], [10], [5], [4], [14].

参考文章(20)
K. Gröchenig, An uncertainty principle related to the Poisson summation formula Studia Mathematica. ,vol. 121, pp. 87- 104 ,(1996) , 10.4064/SM-121-1-87-104
Gerald B. Folland, Harmonic analysis in phase space ,(1989)
Hans G. Feichtinger, Krzysztof Nowak, A First Survey of Gabor Multipliers Birkhäuser, Boston, MA. pp. 99- 128 ,(2003) , 10.1007/978-1-4612-0133-5_5
Paolo Boggiatto, Elena Cordero, Anti-Wick quantization with symbols in ^{} spaces Proceedings of the American Mathematical Society. ,vol. 130, pp. 2679- 2685 ,(2002) , 10.1090/S0002-9939-02-06348-7
Karlheinz Gröchenig, Foundations of Time-Frequency Analysis ,(2000)
Jean-Pierre Antoine, Syed Twareque Ali, Jean-Pierre Gazeau, Coherent States, Wavelets, and Their Generalizations ,(2000)
James C. T. Pool, Mathematical Aspects of the Weyl Correspondence Journal of Mathematical Physics. ,vol. 7, pp. 66- 76 ,(1966) , 10.1063/1.1704817