Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study

作者: J. Zhang , M. Marszałek , S. Lazebnik , C. Schmid

DOI: 10.1007/S11263-006-9794-4

关键词:

摘要: Recently, methods based on local image features have shown promise for texture and object recognition tasks. This paper presents a large-scale evaluation of an approach that represents images as distributions (signatures or histograms) extracted from sparse set keypoint locations learns Support Vector Machine classifier with kernels two effective measures comparing distributions, the Earth Mover’s Distance ÷2 distance. We first evaluate performance our different detectors descriptors, well classifiers. then conduct comparative several state-of-the-art 4 5 databases. On most these databases, implementation exceeds best reported results achieves comparable rest. Finally, we investigate influence background correlations performance.

参考文章(65)
O Chapelle, J Eichhorn, Object categorization with SVM: kernels for local features Max Planck Institute for Biological Cybernetics. ,(2004)
John Lafferty, Kamal Nigam, Andrew McCallum, Using Maximum Entropy for Text Classification ,(1999)
Svetlana Lazebnik, Marcin Marszałek, Jianguo Zhang, Cordelia Schmid, Local Features and Kernels for Classification of Texture and Object Categories: An In-Depth Study INRIA. pp. 39- ,(2005)
Thomas Leung, Jitendra Malik, Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textons International Journal of Computer Vision. ,vol. 43, pp. 29- 44 ,(2001) , 10.1023/A:1011126920638
Jutta Willamowski, Christopher R. Dance, Gabriella Csurka, Damian Arregui, Lixin Fan, Categorizing Nine Visual Classes using Local Appearance Descriptors ,(2004)
A. Opelt, M. Fussenegger, A. Pinz, P. Auer, Weak Hypotheses and Boosting for Generic Object Detection and Recognition european conference on computer vision. pp. 71- 84 ,(2004) , 10.1007/978-3-540-24671-8_6
Kamal Nigam, Andrew McCallum, A comparison of event models for naive bayes text classification national conference on artificial intelligence. pp. 41- 48 ,(1998)
Bernhard Schölkopf, Alexander J. Smola, Learning with Kernels The MIT Press. pp. 626- ,(2018) , 10.7551/MITPRESS/4175.001.0001
Dan Pelleg, Andrew W. Moore, X-means: Extending K-means with Efficient Estimation of the Number of Clusters international conference on machine learning. pp. 727- 734 ,(2000)
Gyuri Dorkó, Cordelia Schmid, Object Class Recognition Using Discriminative Local Features INRIA. pp. 22- ,(2005)