In silico Pathway Activation Network Decomposition Analysis (iPANDA) as a method for biomarker development.

作者: Ivan V. Ozerov , Ksenia V. Lezhnina , Evgeny Izumchenko , Artem V. Artemov , Sergey Medintsev

DOI: 10.1038/NCOMMS13427

关键词:

摘要: Signalling pathway activation analysis is a powerful approach for extracting biologically relevant features from large-scale transcriptomic and proteomic data. However, modern pathway-based methods often fail to provide stable signatures of specific phenotype or reliable disease biomarkers. In the present study, we introduce in silico Pathway Activation Network Decomposition Analysis (iPANDA) as scalable robust method biomarker identification using gene expression The iPANDA combines precalculated coexpression data with importance factors based on degree differential topology decomposition obtaining scores. Using Microarray Quality Control (MAQC) sets pretreatment Taxol-based neoadjuvant breast cancer therapy multiple sources, demonstrate that provides significant noise reduction identifies highly signatures. We successfully apply stratifying patients according their sensitivity therapy. aids interpretation data, but existing algorithms fall short providing identification. introduced here includes estimation robustly identify pathways biomarkers patient stratification.

参考文章(47)
A D Seidman, L Norton, J Baselga, P P Rosen, HER2 overexpression and paclitaxel sensitivity in breast cancer: therapeutic implications. Oncology. ,vol. 11, pp. 43- 48 ,(1997)
Zena M. Hira, Duncan F. Gillies, A Review of Feature Selection and Feature Extraction Methods Applied on Microarray Data. Advances in Bioinformatics. ,vol. 2015, pp. 198363- 198363 ,(2015) , 10.1155/2015/198363
Larisa Venkova, Alexander Aliper, Maria Suntsova, Roman Kholodenko, Denis Shepelin, Nicolas Borisov, Galina Malakhova, Raif Vasilov, Sergey Roumiantsev, Alex Zhavoronkov, Anton Buzdin, Combinatorial high-throughput experimental and bioinformatic approach identifies molecular pathways linked with the sensitivity to anticancer target drugs Oncotarget. ,vol. 6, pp. 27227- 27238 ,(2015) , 10.18632/ONCOTARGET.4507
Sahil Shah, Rosemary Braun, Network Methods for Pathway Analysis of Genomic Data arXiv: Quantitative Methods. ,(2014)
N. J. Nelson, Can HER2 Status Predict Response to Cancer Therapy Journal of the National Cancer Institute. ,vol. 92, pp. 366- 367 ,(2000) , 10.1093/JNCI/92.5.366
Daniel Harari, Yosef Yarden, Molecular mechanisms underlying ErbB2/HER2 action in breast cancer. Oncogene. ,vol. 19, pp. 6102- 6114 ,(2000) , 10.1038/SJ.ONC.1203973
Wynn L Walker, Isaac H Liao, Donald L Gilbert, Brenda Wong, Katherine S Pollard, Charles E McCulloch, Lisa Lit, Frank R Sharp, Empirical Bayes accomodation of batch-effects in microarray data using identical replicate reference samples: application to RNA expression profiling of blood from Duchenne muscular dystrophy patients BMC Genomics. ,vol. 9, pp. 494- 494 ,(2008) , 10.1186/1471-2164-9-494
YZ Chen, JY Xue, CM Chen, BL Yang, QH Xu, F Wu, F Liu, X Ye, X Meng, GY Liu, ZZ Shen, ZM Shao, J Wu, None, PPAR signaling pathway may be an important predictor of breast cancer response to neoadjuvant chemotherapy Cancer Chemotherapy and Pharmacology. ,vol. 70, pp. 637- 644 ,(2012) , 10.1007/S00280-012-1949-0
Ashley G. Rivenbark, Siobhan M. O’Connor, William B. Coleman, Molecular and cellular heterogeneity in breast cancer: challenges for personalized medicine. American Journal of Pathology. ,vol. 183, pp. 1113- 1124 ,(2013) , 10.1016/J.AJPATH.2013.08.002
Richard Shippy, Stephanie Fulmer-Smentek, Roderick V Jensen, Wendell D Jones, Paul K Wolber, Charles D Johnson, P Scott Pine, Cecilie Boysen, Xu Guo, Eugene Chudin, Yongming Andrew Sun, James C Willey, Jean Thierry-Mieg, Danielle Thierry-Mieg, Robert A Setterquist, Mike Wilson, Anne Bergstrom Lucas, Natalia Novoradovskaya, Adam Papallo, Yaron Turpaz, Shawn C Baker, Janet A Warrington, Leming Shi, Damir Herman, Using RNA sample titrations to assess microarray platform performance and normalization techniques Nature Biotechnology. ,vol. 24, pp. 1123- 1131 ,(2006) , 10.1038/NBT1241