Grey-box radial basis function modelling

作者: Sheng Chen , Xia Hong , Chris J. Harris

DOI: 10.1016/J.NEUCOM.2011.01.023

关键词:

摘要: A fundamental principle in data modelling is to incorporate available a priori information regarding the underlying generating mechanism into process. We adopt this and consider grey-box radial basis function (RBF) capable of incorporating prior knowledge. Specifically, we show how explicitly two types knowledge: (i) exhibits known symmetric property, (ii) process obeys set given boundary value constraints. The class efficient orthogonal least squares regression algorithms can readily be applied without any modification construct parsimonious RBF models with enhanced generalisation capability.

参考文章(47)
Yan Li, N. Sundararajan, P. Saratchandran, Zhifeng Wang, Robust neuro-H/sub /spl infin// controller design for aircraft auto-landing IEEE Transactions on Aerospace and Electronic Systems. ,vol. 40, pp. 158- 167 ,(2004) , 10.1109/TAES.2004.1292150
Radial basis function networks for classifying process faults IEEE Control Systems Magazine. ,vol. 11, pp. 31- 38 ,(1991) , 10.1109/37.75576
S. CHEN, S. A. BILLINGS, C. F. N. COWAN, P. M. GRANT, Non-linear systems identification using radial basis functions International Journal of Systems Science. ,vol. 21, pp. 2513- 2539 ,(1990) , 10.1080/00207729008910567
X. Hong, P.M. Sharkey, K. Warwick, Automatic nonlinear predictive model-construction algorithm using forward regression and the PRESS statistic IEE Proceedings - Control Theory and Applications. ,vol. 150, pp. 245- 254 ,(2003) , 10.1049/IP-CTA:20030311
Luis Antonio Aguirre, Rafael A. M. Lopes, Gleison F. V. Amaral, Christophe Letellier, Constraining the topology of neural networks to ensure dynamics with symmetry properties. Physical Review E. ,vol. 69, pp. 026701- ,(2004) , 10.1103/PHYSREVE.69.026701
S. Muraki, T. Nakai, Y. Kita, K. Tsuda, An attempt for coloring multichannel MR imaging data IEEE Transactions on Visualization and Computer Graphics. ,vol. 7, pp. 265- 274 ,(2001) , 10.1109/2945.942694
S. Chen, X. Hong, C.J. Harris, An orthogonal forward regression technique for sparse kernel density estimation Neurocomputing. ,vol. 71, pp. 931- 943 ,(2008) , 10.1016/J.NEUCOM.2007.02.008