作者: Yo Tomota , Shigeo Sato , Masahiro Uchida , Ping Guang Xu , Stefanus Hirjo
DOI: 10.4028/WWW.SCIENTIFIC.NET/MSF.905.25
关键词:
摘要: Microstructural change during hot compressive deformation at 700 oC followed by isothermal annealing for a Fe-32Ni austenitic alloy was monitored using in situ neutron diffraction. The evolution of deformation texture with 40% compression and its change to recrystallization texture during isothermal annealing were presented by inverse pole figures for the axial and radial directions. The change in dislocation density was tracked using the convolutional multiple whole profile fitting method. To obtain the fitting results with good accuracies, at least 60 s time-interval for slicing the event-mode recorded data was needed. The average dislocation density in 60 s after hot compression was determined to be 2.8 x 1014 m-2, and it decreased with increasing of annealing time.