Norm-linear and norm-additive operators between uniform algebras

作者: Thomas Tonev , Rebekah Yates

DOI: 10.1016/J.JMAA.2009.03.039

关键词:

摘要: Abstract Let A ⊂ C ( X ) and B Y be uniform algebras with Choquet boundaries δA δB. map T : → is called norm-linear if ‖ λ f + μ g = ; norm-additive, , norm-additive in modulus, | for each ∈ all algebra elements g. We show that any surjection there exists a homeomorphism ψ δ such y every . Sufficient conditions surjections, not assumed priori to linear, or continuous, unital isometric isomorphisms are given. prove which i preserves the peripheral spectra of -peaking functions A, isomorphism. In particular, we linear operator between two algebras, surjective norm-preserving, unital, functions, then it automatically multiplicative and, fact, an

参考文章(14)
Toma V. Tonev, Suren A. Grigoryan, Shift-invariant Uniform Algebras on Groups ,(2006)
S. Kowalski, Z. Słodkowski, A characterization of multiplicative linear functionals in Banach algebras Studia Mathematica. ,vol. 67, pp. 215- 223 ,(1980) , 10.4064/SM-67-3-215-223
Gerald M. Leibowitz, Lectures on Complex Function Algebras ,(1970)
Lajos Molnár, Some characterizations of the automorphisms of B(H) and C(X) Proceedings of the American Mathematical Society. ,vol. 130, pp. 111- 120 ,(2001) , 10.1090/S0002-9939-01-06172-X
Osamu Hatori, Takeshi Miura, Hiroyuki Takagi, Characterizations of isometric isomorphisms between uniform algebras via nonlinear range-preserving properties Proceedings of the American Mathematical Society. ,vol. 134, pp. 2923- 2930 ,(2006) , 10.1090/S0002-9939-06-08500-5
N. V. Rao, A. K. Roy, Multiplicatively spectrum-preserving maps of function algebras Proceedings of the American Mathematical Society. ,vol. 133, pp. 1135- 1142 ,(2004) , 10.1090/S0002-9939-04-07615-4
Aaron Luttman, Thomas Tonev, Uniform algebra isomorphisms and peripheral multiplicativity Proceedings of the American Mathematical Society. ,vol. 135, pp. 3589- 3598 ,(2007) , 10.1090/S0002-9939-07-08881-8
Osamu Hatori, Takeshi Miura, Hiroyuki Takagi, Unital and multiplicatively spectrum-preserving surjections between semi-simple commutative Banach algebras are linear and multiplicative Journal of Mathematical Analysis and Applications. ,vol. 326, pp. 281- 296 ,(2007) , 10.1016/J.JMAA.2006.02.084
M. Roitman, Y. Sternfeld, When is a linear functional multiplicative Transactions of the American Mathematical Society. ,vol. 267, pp. 111- 124 ,(1981) , 10.1090/S0002-9947-1981-0621976-6