Example Based Lesion Segmentation.

作者: Snehashis Roy , Qing He , Aaron Carass , Amod Jog , Jennifer L. Cuzzocreo

DOI: 10.1117/12.2043917

关键词:

摘要: Automatic and accurate detection of white matter lesions is a significant step toward understanding the progression many diseases, like Alzheimer’s disease or multiple sclerosis. Multi-modal MR images are often used to segment T2 that can represent regions demyelination ischemia. Some automated lesion segmentation methods describe intensities using generative models, then classify with some combination heuristics cost minimization. In contrast, we propose patch-based method, in which found examples from an atlas containing multi-modal corresponding manual delineations lesions. Patches subject matched patches memberships based on patch similarity weights. We experiment 43 subjects MS, whose scans show various levels lesion-load. demonstrate improvement Dice coefficient total volume compared state art model-based indicating more delineation

参考文章(20)
Snehashis Roy, Aaron Carass, Jerry Prince, A compressed sensing approach for MR tissue contrast synthesis information processing in medical imaging. ,vol. 22, pp. 371- 383 ,(2011) , 10.1007/978-3-642-22092-0_31
Dong Hye Ye, Darko Zikic, Ben Glocker, Antonio Criminisi, Ender Konukoglu, Modality propagation: coherent synthesis of subject-specific scans with data-driven regularization. medical image computing and computer-assisted intervention. ,vol. 16, pp. 606- 613 ,(2013) , 10.1007/978-3-642-40811-3_76
Hongzhi Wang, Paul A. Yushkevich, Multi-atlas segmentation without registration: a supervoxel-based approach. medical image computing and computer-assisted intervention. ,vol. 16, pp. 535- 542 ,(2013) , 10.1007/978-3-642-40760-4_67
Snehashis Roy, Amod Jog, Aaron Carass, Jerry L. Prince, Atlas Based Intensity Transformation of Brain MR Images medical image computing and computer assisted intervention. pp. 51- 62 ,(2013) , 10.1007/978-3-319-02126-3_6
L. S. Aït-Ali, S. Prima, P. Hellier, B. Carsin, G. Edan, C. Barillot, STREM: a robust multidimensional parametric method to segment MS lesions in MRI medical image computing and computer assisted intervention. ,vol. 8, pp. 409- 416 ,(2005) , 10.1007/11566465_51
Snehashis Roy, Aaron Carass, Jerry L. Prince, Magnetic Resonance Image Example-Based Contrast Synthesis IEEE Transactions on Medical Imaging. ,vol. 32, pp. 2348- 2363 ,(2013) , 10.1109/TMI.2013.2282126
Zhiqiang Lao, Dinggang Shen, Dengfeng Liu, Abbas F. Jawad, Elias R. Melhem, Lenore J. Launer, R. Nick Bryan, Christos Davatzikos, Computer-Assisted Segmentation of White Matter Lesions in 3D MR Images Using Support Vector Machine Academic Radiology. ,vol. 15, pp. 300- 313 ,(2008) , 10.1016/J.ACRA.2007.10.012
Pierrick Coupé, José V. Manjón, Vladimir Fonov, Jens Pruessner, Montserrat Robles, D. Louis Collins, Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation. NeuroImage. ,vol. 54, pp. 940- 954 ,(2011) , 10.1016/J.NEUROIMAGE.2010.09.018
David L. Donoho, Yaakov Tsaig, Iddo Drori, Jean-Luc Starck, Sparse Solution of Underdetermined Systems of Linear Equations by Stagewise Orthogonal Matching Pursuit IEEE Transactions on Information Theory. ,vol. 58, pp. 1094- 1121 ,(2012) , 10.1109/TIT.2011.2173241
Navid Shiee, Pierre-Louis Bazin, Arzu Ozturk, Daniel S. Reich, Peter A. Calabresi, Dzung L. Pham, A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions. NeuroImage. ,vol. 49, pp. 1524- 1535 ,(2010) , 10.1016/J.NEUROIMAGE.2009.09.005