Towards a semantics for higher-order quantum computation

作者: Peter Selinger

DOI:

关键词:

摘要: The search for a semantics higher-order quantum computation leads naturally to the study of categories normed cones. In first part this paper, we develop theory continuous cones, and prove some their basic properties, including Hahn-Banach style theorem. We then describe two different concrete -autonomous these is built from completely positive maps as in author’s first-order computation. second category reformulation Girard’s coherent spaces. also point out why ultimately, neither satisfactory model

参考文章(10)
Michael Barr, Autonomous categories and linear logic Mathematical Structures in Computer Science. ,vol. 1, pp. 159- 178 ,(1991) , 10.1017/S0960129500001274
PETER SELINGER, Towards a quantum programming language Mathematical Structures in Computer Science. ,vol. 14, pp. 527- 586 ,(2004) , 10.1017/S0960129504004256
Karl L�wner, �ber monotone Matrixfunktionen Mathematische Zeitschrift. ,vol. 38, pp. 177- 216 ,(1934) , 10.1007/BF01170633
Regina Tix, Some results on Hahn-Banach-type theorems for continuous D-cones Theoretical Computer Science. ,vol. 264, pp. 205- 218 ,(2001) , 10.1016/S0304-3975(00)00223-1
André van Tonder, A Lambda Calculus for Quantum Computation SIAM Journal on Computing. ,vol. 33, pp. 1109- 1135 ,(2004) , 10.1137/S0097539703432165
B. Coecke, S. Abramsky, A categorical semantics of quantum protocols logic in computer science. pp. 415- 425 ,(2004) , 10.1109/LICS.2004.1
Andre van Tonder, Quantum Computation, Categorical Semantics and Linear Logic arXiv: Quantum Physics. ,(2003)
Achim Jung, Samson Abramsky, Domain theory logic in computer science. pp. 1- 168 ,(1995)