Robust Functional Principal Component Analysis

作者: Juan Lucas Bali , Graciela Boente

DOI: 10.1007/978-3-319-05323-3_4

关键词:

摘要: When dealing with multivariate data robust principal component analysis (PCA), like classical PCA, searches for directions maximal dispersion of the projected on it. Instead using variance as a measure dispersion, scale estimator s n may be used in maximization problem. In this paper, we review some proposed approaches to functional PCA including one which adapts projection pursuit approach setting.

参考文章(29)
John A. Rice, B. W. Silverman, Estimating the mean and covariance structure nonparametrically when the data are curves Journal of the royal statistical society series b-methodological. ,vol. 53, pp. 233- 243 ,(1991) , 10.1111/J.2517-6161.1991.TB01821.X
BW Silverman, SD Pezzulli, Some properties of smoothed principal components analysis for functional data Computational Statistics. ,vol. 8, pp. 1- 16 ,(1993)
Pallavi Sawant, Nedret Billor, Hyejin Shin, Functional outlier detection with robust functional principal component analysis Computational Statistics. ,vol. 27, pp. 83- 102 ,(2012) , 10.1007/S00180-011-0239-3
Hengjian Cui, Xuming He, Kai W Ng, Asymptotic distributions of principal components based on robust dispersions Biometrika. ,vol. 90, pp. 953- 966 ,(2003) , 10.1093/BIOMET/90.4.953
Guoying Li, Zhonglian Chen, Projection-Pursuit Approach to Robust Dispersion Matrices and Principal Components: Primary Theory and Monte Carlo Journal of the American Statistical Association. ,vol. 80, pp. 759- 766 ,(1985) , 10.1080/01621459.1985.10478181
Graciela Boente, Ricardo Fraiman, Kernel-based functional principal components ( Statistics & Probability Letters. ,vol. 48, pp. 335- 345 ,(2000) , 10.1016/S0167-7152(00)00014-6
Bernard W. Silverman, Smoothed functional principal components analysis by choice of norm Annals of Statistics. ,vol. 24, pp. 1- 24 ,(1996) , 10.1214/AOS/1033066196
Christophe Croux, Peter Filzmoser, M. Rosario Oliveira, Algorithms for Projection-Pursuit Robust Principal Component Analysis Social Science Research Network. ,(2006) , 10.2139/SSRN.968376