Hyperbolic Voronoi Diagrams Made Easy

作者: Frank Nielsen , Richard Nock

DOI: 10.1109/ICCSA.2010.37

关键词:

摘要: We present a simple framework to compute hyperbolic Voronoi diagrams of finite point sets as affine diagrams.We prove that bisectors in Klein's non-conformal disk model are hyperplanes can be interpreted power Euclidean balls.Therefore our method simply consists computing an equivalent clipped diagram followed by mapping transformation depending on the selected representation space (e.g., Poincare conformal or upper-plane representations). discuss extensions this approach weighted and $k$-order diagrams, describe their dual triangulations.Finally, we consider two useful primitives for designing tailored user interfaces image catalog browsing application disk:(1) finding nearest neighbors, (2) smallest enclosing balls.

参考文章(18)
Jean-Daniel Boissonnat, Mariette Yvinec, Algorithmic Geometry: Frontmatter ,(1998) , 10.1017/CBO9781139172998
Zahra Nilforoushan, Ali Mohades, Hyperbolic Voronoi Diagram Computational Science and Its Applications - ICCSA 2006. pp. 735- 742 ,(2006) , 10.1007/11751649_81
Kensuke Onishi, Jin Ichi Itoh, Voronoi diagram in simply connected complete manifold IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences. ,vol. 85, pp. 944- 948 ,(2002)
Marshall Bern, David Eppstein, Optimal Möbius Transformations for Information Visualization and Meshing workshop on algorithms and data structures. pp. 14- 25 ,(2001) , 10.1007/3-540-44634-6_3
Jean-Daniel Boissonnat, Menelaos I. Karavelas, On the combinatorial complexity of euclidean Voronoi cells and convex hulls of d-dimensional spheres symposium on discrete algorithms. pp. 305- 312 ,(2003) , 10.5555/644108.644159
John Lamping, Ramana Rao, Peter Pirolli, A focus+context technique based on hyperbolic geometry for visualizing large hierarchies human factors in computing systems. pp. 401- 408 ,(1995) , 10.1145/223904.223956
Frank Nielsen, Richard Nock, On the smallest enclosing information disk Information Processing Letters. ,vol. 105, pp. 93- 97 ,(2008) , 10.1016/J.IPL.2007.08.007
Bruce G. Lindsay, Paul W. Vos, Robert E. Kass, Geometrical Foundations of Asymptotic Inference ,(1997)
F. Aurenhammer, Power diagrams: properties, algorithms and applications SIAM Journal on Computing. ,vol. 16, pp. 78- 96 ,(1987) , 10.1137/0216006