A survey of optimization by building and using probabilistic models

作者: M. Pelikan , D.E. Goldberg , F. Lobo

DOI: 10.1109/ACC.2000.879173

关键词:

摘要: This paper summarizes the research on population-based probabilistic search algorithms based on modeling promising solutions by estimating their probability distribution and using …

参考文章(38)
Thilo Mahnig, Heinz Muhlenbein, Convergence Theory and Applications of the Factorized Distribution Algorithm computer and information technology. ,vol. 7, pp. 19- 32 ,(2015)
Shigenobu Kobayashi, Isao Ono, A Real Coded Genetic Algorithm for Function Optimization Using Unimodal Normal Distributed Crossover. Proc. 7th ICGA, 1997. pp. 246- 253 ,(1997)
David E. Goldberg, Dimitri Knjazew, OMEGA - ordering messy GA: solving permutation problems with the fast messy genetic algorithm and random keys genetic and evolutionary computation conference. pp. 181- 188 ,(2000)
Marcus Frean, Tom Downs, Marcus Gallagher, Real-valued evolutionary optimization using a flexible probability density estimator genetic and evolutionary computation conference. ,vol. 1, pp. 840- 846 ,(1999)
Armin Heinzl, David E. Goldberg, Franz Rothlauf, Bad codings and the utility of well-designed genetic algorithms genetic and evolutionary computation conference. pp. 355- 362 ,(2000)
Kalyanmoy Deb, Ram Bhushan Agrawal, Simulated Binary Crossover for Continuous Search Space. Complex Systems. ,vol. 9, ,(1995)
Rafał Sałustowicz, Jürgen Schmidhuber, Probabilistic Incremental Program Evolution: Stochastic Search Through Program Space european conference on machine learning. ,vol. 1224, pp. 213- 220 ,(1997) , 10.1007/3-540-62858-4_86