A class of almost contact Riemannian manifolds

作者: Katsuei Kenmotsu

DOI: 10.2748/TMJ/1178241594

关键词:

摘要: Recently S. Tanno has classified connected almostcontact Riemannian manifolds whose automorphism groups have themaximum dimension [9]. In his classification table the almost contactRiemannian are divided into three classes: (1) homogeneousnormal contact with constant 0-holomorphic sec-tional curvature if sectional for 2-planes which contain

参考文章(8)
D. E. Blair, The theory of quasi-Sasakian structures Journal of Differential Geometry. ,vol. 1, pp. 331- 345 ,(1967) , 10.4310/JDG/1214428097
Shûkichi Tanno, The automorphism groups of almost contact Riemannian manifolds Tohoku Mathematical Journal. ,vol. 21, pp. 21- 38 ,(1969) , 10.2748/TMJ/1178243031
Katsumi NOMIZU, Brian SMYTH, Differential geometry of complex hypersurfaces II Journal of The Mathematical Society of Japan. ,vol. 20, pp. 498- 521 ,(1968) , 10.2969/JMSJ/02030498
Masafumi Okumura, Some remarks on space with a certain contact structure Tohoku Mathematical Journal. ,vol. 14, pp. 135- 145 ,(1962) , 10.2748/TMJ/1178244168
Shukichi TANNO, Almost complex structures in bundle spaces over almost contact manifolds Journal of The Mathematical Society of Japan. ,vol. 17, pp. 167- 186 ,(1965) , 10.2969/JMSJ/01720167
Koichi Ogiue, On almost contact manifolds admitting axiom of planes or axiom of free mobility Kodai Mathematical Seminar Reports. ,vol. 16, pp. 223- 232 ,(1964) , 10.2996/KMJ/1138844949
R. L. Bishop, B. O’Neill, Manifolds of negative curvature Transactions of the American Mathematical Society. ,vol. 145, pp. 1- 49 ,(1969) , 10.1090/S0002-9947-1969-0251664-4
Shoshichi KOBAYASHI (and NOMIZU (Katsumi)), Foundations of Differential Geometry ,(1963)